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Background: Self-monitoring of blood glucose by dia-
betics is crucial in the reduction of complications related
to diabetes. Current monitoring techniques are invasive
and painful, and discourage regular use. The aim of this
study was to demonstrate the use of near-infrared (NIR)
diffuse reflectance over the 1050–2450 nm wavelength
range for noninvasive monitoring of blood glucose.
Methods: Two approaches were used to develop cali-
bration models for predicting the concentration of blood
glucose. In the first approach, seven diabetic subjects
were studied over a 35-day period with random collec-
tion of NIR spectra. Corresponding blood samples were
collected for analyte analysis during the collection of
each NIR spectrum. The second approach involved three
nondiabetic subjects and the use of oral glucose toler-
ance tests (OGTTs) over multiple days to cause fluctu-
ations in blood glucose concentrations. Twenty NIR
spectra were collected over the 3.5-h test, with 16 corre-
sponding blood specimens taken for analyte analysis.
Results: Statistically valid calibration models were de-
veloped on three of the seven diabetic subjects. The
mean standard error of prediction through cross-valida-
tion was 1.41 mmol/L (25 mg/dL). The results from the
OGTT testing of three nondiabetic subjects yielded a
mean standard error of calibration of 1.1 mmol/L (20
mg/dL). Validation of the calibration model with an
independent test set produced a mean standard error of
prediction equivalent to 1.03 mmol/L (19 mg/dL).
Conclusions: These data provide preliminary evidence
and allow cautious optimism that NIR diffuse reflec-
tance spectroscopy using the 1050–2450 nm wavelength
range can be used to predict blood glucose concentra-
tions noninvasively. Substantial research is still re-
quired to validate whether this technology is a viable
tool for long-term home diagnostic use by diabetics.
© 1999 American Association for Clinical Chemistry

Diabetes is a leading cause of death and disability world-
wide and afflicts an estimated 16 million Americans.
Complications of diabetes include heart and kidney dis-
ease, blindness, nerve damage, and high blood pressure,
with the estimated total cost to the United States economy
alone exceeding $90 billion per year (1 ). Long-term clin-
ical studies have shown that the onset of complications
can be substantially reduced through proper control of
blood glucose (2 ).

A vital element of diabetes management is the self-
monitoring of blood glucose by diabetics in the home
environment. Unfortunately, current monitoring tech-
niques discourage regular use because of the invasive and
painful nature of sampling. Therefore, new methods for
self-monitoring of blood glucose are required to improve
the prospects for more rigorous control of blood glucose
in diabetic patients.

Numerous approaches have been explored for measur-
ing blood glucose, ranging from invasive methods such as
microdialysis to noninvasive technologies that rely on
spectroscopy. Each method has associated advantages
and disadvantages, but only a few have received approval
from certifying agencies. Unfortunately, noninvasive
techniques for the self-monitoring of blood glucose have
not been certified.

One method, near-infrared (NIR)1 diffuse reflectance
spectroscopy involves the illumination of a spot on the
body with low-energy NIR light (750–2500 nm). The light
is partially absorbed and scattered, according to its inter-
action with chemical components within the tissue, before
being reflected back to a detector. The detected light is
used to create a graph of 2log R/Rs, where R is the
reflectance spectrum of the skin and Rs is the reflectance
of the instrument calibrator. In infrared spectroscopy, this
graph is analogous to an absorbance spectrum containing
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quantitative information that is based on the known
interaction of the incident light with components of the
body tissue and will be referred to in this manner
throughout the remainder of the text.

The absorbance spectrum contains a mixture of the
spectral signatures of many tissue components, including
water, fat, protein, and glucose. An example of a nonin-
vasive, NIR sample spectrum is given in Fig. 1. The
spectrum was collected using a custom-designed spec-
trometer, described below, with staring detectors. An 80%
Spectralon reflectance calibrator was used to measure Rs,
and the forearm of a human subject was scanned to obtain R.

The prediction of blood glucose concentration is ac-
complished by detecting the magnitude of light attenua-
tion caused by the absorption signature of blood glucose
as represented in the targeted tissue volume (capillary
beds) of the skin. The process of calibration involves the
development of a mathematical transformation or model,
which is used to estimate the blood glucose concentration
from the measured tissue absorbance spectrum.

Specific studies have demonstrated that NIR diffuse
reflectance spectroscopy represents a feasible and prom-
ising approach to the noninvasive prediction of blood
glucose concentrations (3–12). Robinson et al. (3 ) reported
three different instrument configurations for measuring
diffuse transmittance through the finger in the 600-1300
nm range. Meal tolerance tests were used to perturb the
glucose concentrations of three subjects, and calibration

models were constructed specific to each subject on single
days and tested through cross-validation. The absolute
mean prediction errors ranged from 1.1 to 2.1 mmol/L
(19.8 to 37.8 mg/dL).

Heise and co-workers (5, 7) and Marbach et al. (6 )
presented results through a diffuse reflectance measure-
ment of the oral mucosa in the 1111–1835 nm range with
an optimized diffuse reflectance accessory (13 ). In vivo
experiments were conducted on single diabetics using
glucose tolerance tests and on a population of 133 differ-
ent subjects. The best standard error of prediction (SEP)
reported was 2.4 mmol/L (43 mg/dL) and was obtained
from a 2-day single-person oral glucose tolerance test
(OGTT) that was evaluated through cross-validation.

The studies reported by Jagemann et al. (8 ), Fisch-
bacher et al. (9 ), Danzer et al. (10 ), and Muller et al. (12 )
recorded spectra in diffuse reflectance over the 800-1350
nm range on the middle finger of the right hand with a
fiber-optic probe. Each experiment involved a diabetic
subject and was conducted over a single day with pertur-
bation of blood glucose concentrations through carbohy-
drate loading. Results, using both partial least-squares
(PLS) regression and radial basis function neural net-
works were evaluated on single subjects over single days
through cross-validation. Danzer et al. (10 ) reported a
mean root mean square prediction error of 2.0 mmol/L
(36 mg/dL) through cross-validation over 31 glucose
profiles.

Burmeister et al. (11 ) collected absorbance spectra
through a transmission measurement of the tongue in the
1429–2000 nm range. A study of five diabetic subjects was
conducted over a 39-day period with five samples taken
per day. Every fifth sample was used for an independent
test set and the SEP for all subjects was .3.0 mmol/L (54
mg/dL).

In all of these studies, limitations were cited that would
affect the acceptance of such a method as a commercial
product. These limitations included sensitivity, sampling
problems, time lag, calibration bias, long-term reproduc-
ibility, and instrument noise. Additionally, accurate non-
invasive estimation of blood glucose is limited at present
by the available NIR technology and the dynamic nature
of the sample: the skin and living tissue of the patient [for
example, see Khalil (14 )]. Chemical, structural, and phys-
iological variations occur that produce dramatic and
nonlinear changes in the optical properties of the tissue
sample. The measurement is further complicated by the
complex and varying background signals of other sub-
stances present in blood (tissue).

The research presented here is an advancement in the
development a noninvasive diffuse reflectance NIR anal-
ysis for blood glucose and addresses several of the limi-
tations of prior studies. The spectral range is extended to
cover 1050–2450 nm, and the measurement is made with
two different optical probes involving staring detectors
and a fiber-optic accessory. The addition of the 2000–2450
nm range ensures accessibility to the glucose bands with

Fig. 1. Plot of the 2log10R/Rs absorbance spectrum collected in
diffuse reflectance mode on the forearm, using a custom-built scan-
ning spectrometer with staring detectors.
The visually discernible absorbance features are attributable to water (1192,
1448, 1787, 1948, and 2600 nm), fat (1210, 1725, 1760, 2299, and 2342
nm), and protein (1700, 1740, 2056, 2174, and 2273 nm). The magnitude of
absorbance attributable to glucose is four to five orders of magnitude less than
the absorbance of water, with glucose absorbance bands located at 1613,
1689, 1732, 2105, 2273, and 2326 nm (27).
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highest absorbance in the near-infrared (15, 16), and the
change from staring optics to fibers dramatically reduces
the problem of skin surface reflectance. The measurement
is made on the forearm as opposed to the finger, tongue,
or oral mucosa, and a custom-designed arm cradle was
applied to minimize pressure and placement error, the
details of which will be described elsewhere. For a diffuse
reflectance measurement in the target wavelength range,
this site was less susceptible to the effects of saliva, food,
or movement during measurement than the tongue or lip.
Furthermore, the forearm is expected to produce a more
uniform spectral measurement between subjects than the
fingers.

Two separate studies are presented aimed at the de-
velopment of calibrations specific to individuals. The first
involves the repeated measurement of subjects on a
regular basis over time and the second uses OGTTs to
rapidly change the subject’s blood glucose concentration.

The motivation for modeling of instrument responses
during an OGTT lies in the expectation that tissue chem-
istry and hydration do not vary substantially during the
test. A relatively constant tissue chemistry gives rise to a
relatively constant background, which improves the ac-
cessibility of the analyte signal of glucose by reducing the
complexity of the calibration model. Alternatively, mod-
els based on calibration spectra with modest background
variation cannot be expected to generalize to spectra
taken on tissue containing a chemical matrix not repre-
sented in the calibration set. Another undesirable aspect
of modeling using OGTTs lies in the potential existence of
ancillary correlations that can give rise to “false” predic-
tions (17 ). Despite the pitfalls of OGTTs, we decided that
the simplicity of the interferences would provide a unique
opportunity to study the in vivo measurement.

Although the OGTT studies reported here are similar
to prior studies, this work is the first reported effort that
uses OGTT data conducted on different days to construct
independent calibration and test sets. Two days of toler-
ance test data are used to build a calibration model that is
applied to predict blood glucose concentrations on a third
day. In addition, instrument drift and temperature, sub-
ject (arm) temperature, and interfering analytes are ana-
lyzed to ensure that the glucose predictions are not a
product of spurious correlations to these factors.

Materials and Methods
instrumentation
All NIR spectra were collected using a custom-built
scanning NIR spectrometer. The instrument collected
intensity spectra in diffuse reflectance from the forearm in
the wavelength range 1050–2450 nm. The spectral sam-
pling interval was 1 nm, and the signal-to-noise ratio at
the peak intensity was ;90 dB [10 log10 (peak intensity/
root-mean-square noise)]. The detectors used in the study
were a combination of indium-gallium-arsenide and ex-
tended indium-gallium-arsenide detectors. The single-
subject experiment used an optical configuration involv-

ing staring detectors, whereas the OGTT experiments
used a simple fiber-optic interface to the skin similar to
those reported previously in the literature [for example,
see Jagemann et al. (8 )]. Reference spectra were recorded
before each sample measurement by scanning an 80%
Spectralon reflectance material from Labsphere.

A cradle was developed to position the arm over the
sample interface in a reproducible location with a repro-
ducible degree of pressure. The arm was placed onto the
instrument 30 s before each measurement and removed
subsequent to the measurement period. The subjects
remained seated during the experiment. After the 30-s
period, the diffuse reflectance spectra were collected over
the next 60 s, with eight scans equaling one spectrum.

The internal temperature of the instrument was mea-
sured during each scan with thermistors [Yellow Springs
Instruments(YSI)] and custom electronics. Five different
areas of the instrument were measured with the lamp
assembly acting as the main heat source.

The skin temperature was measured using a YSI 4000
precision thermometer with a skin temperature probe.
The location of the temperature measurement was ;5 mm
away from the illumination point. The skin temperature
was taken before and after each 60-s measurement.

single-subject experiments
Seven diabetic subjects were scanned regularly over a
35-day period with the custom-built scanning NIR spec-
trometer with staring detectors. Subjects were scanned at
most one time per day. Venous glucose was measured by
a hexokinase method (Covance Central Laboratories Ser-
vices, Indianapolis, IN). A calibration model for estimat-
ing blood glucose concentrations from the 2log10(R/Rs)
absorbance spectra was generated for each subject using
the measurements and standard multivariate calibration
methods. Model performance was evaluated through
cross-validation using the “leave-one-out” strategy and
calculating the standard error values. The cross-validation
procedure is used to iteratively predict the glucose con-
centration of each sample by using all other samples to
construct the calibration model. After each sample has
been predicted, the standard error of cross-validation
(SECV) is computed as the root mean square error of the
cross-validation glucose predictions (18 ).

glucose tolerance testing
A series of experiments was conducted to examine the
modeling and prediction of glucose concentrations using
OGTTs. Because of the risk of underlying secondary
correlation, major blood constituents and instrument-
related variables were tracked to determine their contri-
bution to glucose calibration models.

Three nondiabetic participants were subjected to five
OGTT experiments at 2–3 day intervals over the period of
2 weeks. The test protocol included a 6-h fasting period,
followed by a 3.5-h OGTT after the ingestion of a beverage
containing 100 g of d-glucose (Fisher Healthcare). The
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NIR scanning spectrometer with the fiber-optic interface
was used to collect and average two replicate spectra
consisting of 16 scans per 2-min measurement. Scans of an
80% reflectance calibrator were collected before each
noninvasive scan and used to convert intensity spectra to
absorbance spectra as described previously.

Sixteen venous blood specimens were collected be-
tween the noninvasive scans, and the measured blood
analytes were interpolated in time to estimate their re-
spective concentrations at the instance of each spectral
measurement. We measured blood glucose (in duplicate,
YSI 2300 glucose analyzer), hematocrit and hemoglobin
(Sysmex KX-21 hematology analyzer), and other blood
analytes, including triglycerides, cholesterol, total biliru-
bin, total protein, and albumin (Olympus AU400).

Algorithms were developed using the Matlab, Ver. 5.3,
software package with the Chemometrics Toolbox, Ver.
5.1, from Eigenvector Technologies. Preprocessing was
performed using smoothed first derivatives and an in-
house wavelength standardization algorithm. Model pa-
rameters such as wavelength ranges and numbers of
scores were selected on the basis of best predictive per-
formance on the data used in glucose prediction.

The data for each participant were separated into
calibration and test sets by days (each test set consisted of
the data associated with an entire day). Calibration mod-
els were developed through PLS regression (19 ). Model
performance is reported as the standard error of calibra-
tion (SEC) and SEP corresponding to the root mean
square error of the glucose predictions over the calibra-
tion and test sets, respectively.

Results and Discussion
single-subject studies
Spectra collected on each subject were converted to ab-
sorbance units and preprocessed via multiplicative scatter
correction (20 ) and Savisky-Golay 55-point smoothing
(21 ). Calibration models were developed through PLS
using the wavelength ranges 1100–1380, 1450–1850, and
2050–2375 nm. However, only three of the seven subjects
produced data sets that yielded statistically significant
blood glucose calibrations. The first (subject 1) was a type
1 diabetic with a body mass index of 28 kg/m2. A total of
14 NIR spectra were accumulated for this subject with
associated blood glucose concentrations ranging from 5.1
to 24.8 mmol/L (91 to 446 mg/dL). The test set results
from cross-validation are depicted in Fig. 2. The plot is
that of the predicted vs measured blood glucose concen-
trations. A “perfect” calibration would have all of the
predictions falling on the theoretical 45° line (solid line).
The diverging dashed lines indicate the 10% error-of-
reading boundaries required for proper blood glucose
monitoring.

The cross-validation results obtained using the first
subject have a mean prediction error of 9.1% with a SECV
of 1.6 mmol/L (28 mg/dL). Although evident from Fig. 2,
the statistical significance of the cross-validation results

was confirmed through a t-test on the slope of the
predicted vs reference glucose concentrations. A correla-
tion analysis between the measured blood glucose con-
centration and four experimental parameters, including
chronological time (sample order), internal instrument
temperature, reference scan intensity, and time of day,
produced a maximum r2 of 0.13 for the time of day and r2

,0.05 for the other variables. This indicates that it is
unlikely that this calibration is related to instrument
variation.

Although the results are encouraging, concern arises
from the fact that four measurements (29%) fell outside
the 10% error boundaries. Investigation of these specific
samples provided no conclusions concerning the chemical
or sampling variation that might have led to these errors.

The second subject was a type 2 diabetic with a body
mass index of 34 kg/m2. The subject’s blood glucose
concentrations ranged from 4.6 to 16.3 mmol/L (82 to 294
mg/dL) over the 17 NIR scans that were recorded. A
graphical representation of the test set cross-validation
results is shown in Fig. 3.

Although the SECV for subject 2 is similar to that for to
subject 1 (1.7 and 1.6 mmol/L, respectively), it is obvious
that the measurement does not provide an opportunity
for proper blood glucose monitoring. In this experiment,
the mean error-of-reading was 17.6%. Review of the graph
demonstrates that sampling issues exist with this partic-
ular subject because it appears that the calibration model
is not accurate for values ,8.3 mmol/L (150 mg/dL).
Although several potential reasons exist for this result
(e.g., sampling, tissue hydration, and tissue temperature),

Fig. 2. Cross-validation results obtained from subject 1.
SEP 5 1.6 mmol/L (28 mg/dL); mean error 5 9.1%; t 5 15.3. To convert results
(mg/dL) to mmol/L, divide by 18.
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there is no known physical parameter or variable that
provides conclusive evidence as to the reason for the poor
accuracy of the calibration model. These results demon-
strate the variability accompanying any attempts to make
in vivo measurements with NIR diffuse reflectance, as is
evident with the next subject.

The third subject investigated was a type 2 diabetic
with a body mass index of 34 kg/m2 and a blood glucose
of 5.4–9.5 mmol/L (97–171 mg/dL) in 18 samples. The
cross-validation results are displayed in Fig. 4. Unlike the
previous two subjects, the SECV for subject 3 was almost
50% lower [0.95 mmol/L (17.1 mg/dL)], and the mean
error-of-prediction was only 3.6%. Such a result would
easily make this an acceptable measurement for blood
glucose. In this study, all readings fell within the 10%
error-of-reading grid of the plot. Correlation analysis with
the four experimental parameters described above did not
reveal a significant systematic relationship that would
explain the prediction results (r2 ,0.16).

The data from the remaining four diabetics produced
no statistically relevant calibration models. Investigation
of the differences between the successful (n 5 3) and
unsuccessful (n 5 4) experiments revealed that issues
existed within several areas of instrument design and
patient interfacing. The key areas that were identified are
discussed below and include detector electronics, sample
illumination, and tissue condition.

We found that the detector electronics were major
contributors to system noise. We also determined that the
resolution of the 16-bit A/D converter was not sufficient

to provide signal resolution at low concentrations. Rede-
signs have reduced the noise of detector electronics, and
modifications are underway to increase the resolution of
the A/D converter. These modifications are expected to
improve measurement precision at low concentrations.

Investigation into the chosen method of sample illumi-
nation demonstrated that surface reflectance contributed
substantially to a decrease in dynamic range of the
instrument. The redesigned (fiber-optic) has an improved
dynamic range and potential for increasing the amount of
light collected, thus increasing the signal-to-noise ratio of
the measurement.

The experimental results discussed above led to further
study of the effect of tissue condition on the NIR spectral
measurement. Chemical, structural, and physiological
variations occur that produce dramatic changes in the
optical properties of the tissue sample (22–24). Such
variations, for example, may be related to hydration or
changes in the volume fraction of blood in the tissue. Very
tight, dry skin appears to scatter light more efficiently
than soft, supple skin (25 ). These variations greatly affect
the tissue volume sampled and the depth of light pene-
tration, thus affecting the accuracy of the blood glucose
measurement. Studies are underway to investigate the
possible modeling of spectral variance resulting from
changes in skin condition within and between subjects.

glucose tolerance testing
For each subject, the data from three of the five OGTT
experiments were selected for analysis based on the

Fig. 3. Cross-validation results obtained from subject 2.
SEP 5 1.7 mmol/L (31 mg/dL); mean error 5 17.6%; t 5 6.3. To convert results
(mg/dL) to mmol/L, divide by 18. Solid line, theoretical 45° line. Dashed lines,
10% error-of-reading boundaries.

Fig. 4. Cross-validation results obtained from subject 3.
SEP 5 0.95 mmol/L (17 mg/dL); mean error 5 3.6%; t 5 17.1. To convert
results (mg/dL) to mmol/L, divide by 18. Solid line, theoretical 45° line. Dashed
line, 10% error-of-reading lines.
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criteria that instrument temperature variation had to be
,1.5 °C over the experiment and the reference blood
glucose concentrations had to have an insignificant corre-
lation with skin temperature. The selection criteria were
motivated by the potential for ancillary correlations be-
tween blood glucose concentrations and instrument drift
or skin temperature (17 ). Before processing, data were
rejected solely on the basis of the observed temperature
variation of the skin and the internal instrument temper-
ature.

The data associated with each subject were separated
into independent calibration and test sets by selecting the
data from two of the days for calibration and the remain-
ing day for validation. However, the selection of calibra-
tion and test sets was complicated by the strong tendency
of scans to cluster according to the day of measurement.
Clustering of spectra is believed to be related to variations
in skin hydration, skin surface smoothness, and day-to-
day variations in skin surface temperature. The selection
of the calibration set data was directed toward bounding
the test set data in the multivariate calibration space.
Spectral similarity was examined using hierarchical and
K-means clustering (26 ). Failure to consider this aspect
invariably led to dramatic increases in prediction error.

Optimization of the wavelength regions was per-
formed separately for each subject. Although the resulting
ranges varied only slightly between subjects, as shown
below, the necessity of this step implies an inability to
produce a universal calibration applicable to all subjects
with the present measurement system. Therefore, future
efforts must be directed toward instrument standardiza-
tion and calibration transfer to ensure the potential for
widespread application.

Subject 1 was calibrated using spectra collected on
days 1 and 3, and predictions were made from the spectra

taken on day 2. The calibration model was developed
using PLS (with eight scores) and spectral regions that
included the second overtone at 1100–1300 nm, the first
overtone at 1660–1770 nm, and the combination band
region at 2050–2350 nm. Predictions produced a SEC of
1.1 mmol/L (19 mg/dL) and a SEP of 1.0 mmol/L (18
mg/dL). The tolerance test sample number for day 2 vs
the YSI reference values and the predicted glucose are
plotted in Fig. 5.

To determine whether instrument drift caused a sec-
ondary correlation to blood glucose concentrations, a
calibration model was developed using only the reflec-
tance reference spectra. Each reference spectrum was
assigned the glucose value of the subject at that point in
time when the reference spectrum was collected. The
same spectral ranges defined above were used to calibrate
the reference spectra and led to a SEP of 7.6 mmol/L (138
mg/dL). This result combined with the SD of 2.2 mmol/L
(39 mg/dL) in the YSI glucose reference values implies
that instrument-related variation, such as baseline drift,
did not contribute to the statistical significance of the
glucose predictions. Here, the unusually high SEP ob-
tained using reference scans was traced to differences in
the correlation of the instrument drift in the calibration
and test sets. The reference spectra used for calibration
were positively correlated to glucose, but the test set
reference spectra were negatively correlated with glucose,
leading to very poor prediction by the calibration model
based on reference spectra.

Subject 2 was also calibrated using spectra collected on
days 1 and 3 with the predictions being generated from
spectra taken on day 2. The spectral regions used included
the second overtone at 1130–1270 nm, the first overtone at
1660–1830 nm, and the combination band region at 2050–
2360 nm. A calibration model was developed using PLS

Fig. 5. Reference and prediction time profiles for subject 1 tolerance
testing.
f, reference YSI glucose; F, NIR-predicted glucose. To convert results to
mmol/L, divide by 18.

Fig. 6. Reference and prediction time profiles for subject 2 tolerance
testing.
f, reference YSI glucose; F, NIR-predicted glucose. To convert results to
mmol/L, divide by 18.
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with six scores and produced a SEC of 1.2 mmol/L (22
mg/dL) and a SEP of 1.1 mmol/L (20 mg/dL). The
tolerance test sample number for day 2 vs the YSI glucose
reference values and the glucose predicted by NIR are
plotted in Fig. 6. The most accurate calibrations developed
using the reference scans and the same wavelength ranges
yielded a SEP of 2.4 mmol/L (44 mg/dL). This result
combined with the SD in glucose reference values of 2.4
mmol/L (44 mg/dL) can be used to infer that instrument
drift was not a significant factor in developing the glucose
calibration.

The calibrations developed on subject 3 utilized spectra
collected on days 2 and 3, and predictions were per-
formed using the spectra acquired on day 4. The spectral
regions used included the second overtone at 1100–1270
nm, the first overtone at 1670–1830 nm, and the combi-
nation band region at 2160–2340 nm. A PLS calibration
model with a SEC of 1.0 mmol/L (18 mg/dL) and a SEP
of 0.97 mmol/L (17 mg/dL) was developed using 12
scores. The tolerance test sample number for day 2 vs the
YSI reference values and the glucose predictions are
plotted in Fig. 7. The best predictive calibrations devel-
oped using the reflectance calibrator spectra and the same
wavelength ranges yielded a SEP of 2.3 mmol/L (41
mg/dL), and the SD in glucose reference values was 1.9
mmol/L (34 mg/dL).

An examination of the correlation of some major blood
analytes and other sources of false correlation with glu-
cose during each of the three tolerance studies is given in
Table 1. The modest correlation of glucose with those
variables can be used to eliminate these particular vari-
ables as sources of false correlation. Instrument drift can
also be eliminated as a source of false correlation given
the poor predictive performance of calibrations devel-

oped using reference scans collected with each noninva-
sive scan.

Conclusions
The results reported here lead to cautious optimism that
noninvasive glucose measurement using NIR spectros-
copy in the 1050–2450 nm range is possible. The limited
success (three of seven subjects) obtained from the single-
patient studies demonstrated the need for better under-
standing of tissue optics and how long-wavelength NIR
light propagates through tissue. The single-patient studies
also motivated the need for larger data sets on individual
subjects and led to replacement of the lens-based optical
interface with a fiber-optic system and the addition of an
anatomically designed arm support. The use of the new
sampling interface and the arm support substantially
decreased sampling variation, although variability in tis-
sue sampling remains an issue.

The glucose tolerance test data have been used to
develop models that led to accurate blood glucose predic-
tion on spectra collected on alternate days (three of three
subjects) using independent calibration and test set data.
Sampling errors inherent to the in vivo measurement and
the relatively small glucose signal prevent the extraction
of direct evidence that glucose was measured in this
study. In addition, the complexity of the NIR spectrum
makes it difficult to identify or extract unique glucose
absorbances from the NIR in vivo spectrum, which would
ultimately be required to claim a direct measurement of
blood glucose. However, correlation between glucose
measured during a tolerance test and the associated
spectral response has been established and used to predict
in vivo blood glucose concentrations during a tolerance
test. The common sources of false correlation, such as
instrument drift and major blood analytes, have been
eliminated as contributors to the prediction results. The
potential for correlation to other unmeasured sources of
variation (e.g., physiological factors) has not fully been
addressed.

The OGTT experiments also permitted a unique oppor-
tunity to gain a better understanding of experimental
constraints, the impact of physiological variations on the

Fig. 7. Reference and prediction time profiles for subject 3 tolerance
testing.
f, reference YSI glucose; F, NIR-predicted glucose. To convert results to
mmol/L, divide by 18.

Table 1. Results from a correlation analysis between blood
glucose concentration and other variables.

Analyte

r 2

Subject 1 Subject 2 Subject 3

Elapsed time 0.0387 0.0258 0.0395
Skin temperature 0.0088 0.0446 0.0222
Hemoglobin 0.0363 0.0253 0.0122
Hematocrit 0.0076 0.0848 0.0247
Total protein 0.0745 0.0614 0.0328
Albumin 0.007 0.0466 0.0328
Total bilirubin 0.0019 0.118 0.2219
Triglycerides 0.164 0.1231 0.0526
Cholesterol 0.1213 0.0548 0.0712
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noninvasive measurement, and the response of the skin to
the measurement process. It has become evident that the
need to control the ambient conditions of the experiment
room and the instrument temperature complicates the
already difficult task of making an effective in vivo
measurement. Furthermore, the difficulty of reproducing
noninvasive measurements in a way that ensures consis-
tency in the weighted sampling of the tissue volume
elements that contribute to the spectrum cannot be over-
stated. Many factors, including variations in skin surface
roughness, hydration of the skin surface and underlying
tissue, the effect of tissue displacement (contact pressure)
by the probe interface, and variations in skin temperature,
can contribute to significant changes in the sampling of
the tissue volume elements. Variables that are internal to
the tissue sample may not be controllable, but their
impact on the measurement must be compensated.

The use of OGTTs to study the development of robust
calibration models will undoubtedly involve a more de-
tailed study of human physiological responses to glucose
tolerance testing. Further study of tolerance tests is ex-
pected to lead to refined strategies for in vivo measure-
ment. Alternative test strategies must also be studied to
address the limitations of calibrations based on glucose
tolerance testing. Studies are currently underway to ex-
amine additional means of reducing sampling variation
and to address the sensitivity of the measurement to
ambient conditions.
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