
Chapter 17

Synchronous integration

 17.1 ‘Boxcar’ detection systems

Phase sensitive detection systems are ideally suited to dealing with signals
which have a steady, or relatively slowly varying, level. In many situations,
however, we need to measure the details of a signal which varies quite
swiftly in a complex manner. The signal may also not last very long. In
order to measure brief, rapidly changing signals a different approach is
required. Synchronous Integration is a technique which allows measurements
to be made on complex signal patterns which have powers well below the
general detector or amplifier noise level. The technique can be employed
in various ways provided two basic requirements are obeyed. Firstly, the
signal must be repeatable so we can produce a series of nominally
identical pulses or Signal Cycles. Secondly, we must obtain an extra Trigger
signal — similar to the phase reference signal required for a PSD — which
can be used to tell the measurement system when each signal cycle begins.
Although it's usually convenient to arrange for signal cycles to occur with a
steady repetition rate, this isn't absolutely necessary provided we know
when each cycle starts.
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Analog synchronous integration (boxcar) system.Figure 17.1

These requirements are often satisfied by using some form of clock which
regularly initiates the signal and provides the trigger information.
Alternatively, the signal generating process may, in itself, provide some
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information telling us when each signal cycle begins. For the sake of
illustration we can concentrate upon a situation where we wish to measure
how the output light intensity of a pulsed laser varies with time during
each output signal pulse. The techniques described in this chapter can,
however, be applied to measure the shape of any repetitive signal pattern.

Some electrical gas discharge lasers can be arranged to produce a series of
light pulses when connected, via a suitable circuit, to a steady power
supply. Each burst of light output is accompanied by an abrupt drop in
the voltage across the gas tube. Under these circumstances we could use
the sudden fall in voltage to trigger the measurement process. More
generally, however, we will have to provide some kind of clock signal to
initiate light output. Figure 17.1 illustrates a typical system designed to
measure how the output intensity of a pulsed laser varies with time. In this
case we have arranged for the system to be controlled by a clock which
both ‘fires’ the laser and triggers the measurements.
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Control and data waveforms in ‘boxcar’ integrator.Figure 17.2
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For the sake of simplicity we can assume that the clock which starts each
cycle of  light output has a period, T. This means that the resulting signal
cycles will occur at the rate, 1/T. Each clock pulse immediately starts a
signal cycle. The clock also controls the operation of a switch which can
connect the amplified signal to an analog integrator. The switch is only
closed for a brief Sampling Interval, δt, which begins after a time delay, ∆,
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following the appearance of each clock pulse.

Synchronous integration works on the basis that all the signal cycles are
similar to one another. We can then define the shape of each individual
pulse in terms of the same function, , where t represents the time
from the beginning of each signal cycle. Figure 17.2 illustrates a typical set
of pulse and signal patterns we might see in a working system of this kind.
The output voltage from the detector is amplified to produce a signal
voltage, , which is presented to the switch. Since the switch is only
connected for a brief period, δt, after a delay, ∆, following the start of each
clock pulse, the signal presented to the integrator looks like the waveform,

, shown in figure 17.2. This can be defined as

v {t }

V {t }

V g {t }
V g {t } ≡ V {t }     ∆ ≤ t ≤ ∆ + δtwhen

  V g {t } ≡ 0 ... (17.1)otherwise

We can now start with the integrator (capacitor) voltage set to zero and
allow the system to operate for n signal cycles. In the absence of any noise
this will produce an output voltage

V o {∆, δt } = n K ∫
 T

0

V g {t }  d t = n K ∫
  ∆ + δt

∆
V {t }  d t ... (17.2)

where

K =
−1
R C

... (17.3)

and R and C are the values of the resistor and capacitor used in the analog
integrator. The minus sign is present because an analog integrator
normally reverses the sign of the signal (see Chapter 15). Provided δt is
sufficiently small, the signal level will not change a great deal between the
times, ∆ and ∆+δt, and we can approximate the above integral to  say that

V o {∆} = n K V {t } δt ... (17.4)
i.e., , is proportional to the signal voltage, , which arises at a
time, , following the start of each pulse. The output is also
proportional to , hence we may increase the magnitude of  by
operating the system for more clock cycles, increasing the value of n. In
effect the system adds up the contributions from a series of pulses to
magnify the output signal level.

V o {∆} V {t }
t = ∆

n K δt V o {t }

In practice, the required signal will always be accompanied by some
unwanted noise voltage, , which — being random — will differ from
one pulse to another. This will contribute an unpredictable amount 

e {t }
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E o = K ∑
n

i = 1
∫

  ∆ + δt

∆
e {i T + t }  d t ... (17.5)

to the integrated output voltage, where  represents the noise
voltage during the i th pulse at a time, t, from its start.

e {i T + t }

Unlike the signal, these noise voltages which occur during each cycle are
not all identical. As the noise is random in nature we can't say what value
this error voltage will have when we make a particular measurement. As
with all random quantities we can only predict the average, typical, or
likely properties of the noise. Taking the simplest example of a ‘white’
noise input spectrum whose noise power spectral density is S . We can use
the arguments presented in section 15.2 to say that the mean noise power
added to a single integration will be . (This result comes
from considering expression 15.9 and recognising that, in this case, the
integration constant .) This means that the voltage produced
by each individual sample integration will typically differ from the next by
a rms amount 

N i = K 2S δt / 2

K 2 ≡ 1 / τ2

εn = N i = K
S δt

2
... (17.6)

The noise power spectrum of a real white noise source can never extend
over an infinite frequency range. (If it did, its total power would be
infinite!) For a practical noise source we can therefore say that the input
total noise power will be , where  represents the Noise
Equivalent Bandwidth of the input noise spectrum. Here we can assume
that this means that the noise covers the frequency range from around
d.c. (0 Hz) up to a maximum frequency equal to . The input will
therefore exhibit an input noise voltage level equivalent to an rms voltage
of .

N i n = S Bn Bn

Bn

e n = S Bn

Combining these expressions we can therefore say that the input and
output rms noise voltage levels will be such that

εn = K e n
δt

2Bn

... (17.7)

This expression links the rms noise level, , at the integrator's output to
the input level, . We can now use this expression to determine the
accuracy of a measurement using the synchronous integrator, although it
is worth remembering that, in general, the precise relationship between

 depends upon the details of the input noise spectrum. A more
detailed analysis would show that expression 17.7 is only strictly true for a

εn

e n

εn  and  e n
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noise spectrum which has a uniform noise power spectral density over a
frequency range,  to  where  and . f m i n f m a x f m i n ≪ 1

2δt f m a x ≫ 1
2δt

As the actual noise level varies randomly from one measurement to
another we can say that typical measured levels after n signal cycles will be

V o ′ {∆} = n K V {∆} δt ± εn n ... (17.8)
The unpredictability of the noise means we can't predict a precise value
for V. Instead, expression 17.8 indicates the most probably result, plus or
minus the probable range of uncertainty. Here the prime indicates a
typical measured value which may not exactly equal the result we might
predict using expression 17.4. Combining expressions 17.4, 17.7 and 17.8
we can obtain

V o ′ {∆} − V o {∆} = ± K e n
n δt
2Bn

... (17.9)

In effect this shows the probable difference between the values we would
measure with and without random noise. 

From expression 17.4 we could expect — in the absence of any random
noise — to find the input signal voltage level,  at a time  from
the expression

V {t } t = ∆

V {t } =
V o {∆}
n K δt

... (17.10)

unfortunately, the inevitable presence of some noise means that a typical
measurement leads to the actual result

V ′ {t } =
V o ′ {∆}
n K δt

... (17.11)

Combining expressions 17.9−17.11 we can say that our measurement of
the input voltage at any time will be

V ′ {t } = V {t } ±  e n
1

2n Bn  δt
... (17.12)

From 17.12 we see that the accuracy of  measurements of the input signal
level will tend to improve as we increase the number of signal cycles we
integrate over. Two points about this result are worth noting. Firstly, both
the total input noise level and the frequency range it covers affect the
accuracy of the measurement. This can be understood by imagining a
situation where a given fixed total input noise power is ‘stretched out’ to
cover a wider frequency range. The effect of such a change would be to
move some of the noise power up to higher frequencies which find it
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more difficult to pass through an integrator. Hence the fraction of the
noise which influences the output will fall if  is increased while  is
kept constant. Secondly, the above result indicates the relative sizes of the
measured signal and noise voltages. When considering the performance
of a signal processing system in terms of S/N ratios we normally consider a
power ratio. Since the voltage accuracy obtained above varies as  we
can expect the output S/N (power) ratio provided by a synchronous
integration system to improve with  — i.e. in proportion with the
number of signal cycles integrated.

Bn e n

δt n

δt n

In order to measure the overall shape of the signal waveform — and
hence the way the laser intensity varies with time — we can now proceed
as follows:

Firstly, set ∆ to a particular value, zero the integrator voltage, and perform
an integration over n clock cycles. Note the integrator output level,
increment ∆ by an amount, δt, and rezero the integrator. Integrate again
for n cycles, and note the new output level. Repeat this process until a
series of  values have been gathered which cover the whole of the
signal cycle. Then use expression 17.11 for a set of times, , to
determine the shape of the input signal with an accuracy which can be
estimated using expression 17.12.

V o ′ {∆}
t = ∆

This form of measurement system is called a synchronous integrator
because we perform integrations on samples which are synchronised with
the signal cycles. Many of the earliest system employed an output time-
constant instead of an integrator. The time delay, ∆, was then slowly swept
continuously over the range 0 to T and the smoothed output displayed on
an oscilloscope or drawn on a plotter. These systems came to be called
‘boxcar’ integrators because the switch control pulse looked on an
oscilloscope like an American railroad waggon running along a track.

Synchronous integration systems are very effective at recovering
information about weak pulses when the noise level is quite high. As usual,
however, there is a price to be paid for this improvement in the measured
S/N ratio. The total measurement for any particular delay, ∆, takes a time
nT since we have to add up the effects of n clock cycles. Hence when we
improve the S/N ratio by increasing n, the measurement takes longer. A
drawback of the method considered so far is that most of the time the
output integrator is disconnected from the input! Only that fraction, δt/T,
of the pulses which occur while the switch is closed contributes to the
measurement result. As a consequence, to measure all the details of the
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pulse shape we have to repeat the measurement process up to T/δt times
for each ∆ value. Hence the time required to measure the whole signal
shape will be . If n is large and δt small, this can turn out to be
quite a long while!

n T 2 / δt

To improve the S/N ratio without increasing the total measurement time
we could chose to increase, δt, the duration of each sample. Unfortunately
we can't expect to observe any signal fluctuations which take place in a
time-scale less than δt because they will be smoothed away by the
integrator. When using a synchronous integrator we can only clearly
observe details of the pulse shape which persist for a time . We can
therefore reduce the total measurement time by increasing δt, but this
may mean that we can no longer see all of the fine details of the signal.
Any real signal will only contain frequency components up to some finite
maximum frequency, . From the arguments outlined in chapter 2
(section 4) we can expect that we will only be able to see all the details of
the signal when 

≥ δt

f m a x

δt ≤
1

2f m a x

... (17.13)

In practice, therefore,  usually represents the optimum choice for δt.
A smaller value increases the required measurement time, a larger value
prevents us from observing all the details of the signal.

1
2f m a x

17.2 Multiplexed and digital systems

The system we have considered so far isn't a very efficient one since, in
general, most of the signal power was ignored because it arrived when the
switch was open. This problem can be dealt with by employing a
Multiplexed arrangement. 

Input

Multiplexed array of synchronous integrators.Figure 17.3
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Figure 17.3 illustrates a multiplexed analog synchronous integration
system. This works in a similar way to the one we have already considered,
but it contains a ‘bank’ of similar switches and integrators. In this system
the first switch, S0, is closed during the periods when , S1
when , S2 when , etc. By using an array of M
such switches and integrators, where , we can arrange that at
any time during each pulse one or another of the switches will be closed
and the signal is being integrated somewhere. At a time, t, during each
pulse the j th switch will be closed, where j can be defined as the integer
value (i.e. the ‘switch number’) such that . Each
switch/integrator provides a separate sampling and integration channel. 

0 < t ≤ δt
δt < t ≤ 2δt 2δt < t ≤ 3δt

M = T / δt

jδt ≤ t < (j + 1) δt

The simple system we considered earlier had just one channel and could
only look at a small part of the signal pulse at a time. The fully
multiplexed version has  channels and covers the whole signal cycle.
The system essentially produces a series of integrated output voltages,

, , etc, and gathers information about all the pulse features
‘in parallel’. The advantage of this arrangement is that all of the
information from each signal cycle is recorded by the bank of integrators.
No signal information is wasted. As a result, the multiplexed system is
much more efficient at collecting information than the single-channel
version. Using this arrangement we don't have to keep repeating the
integration process as ∆ is varied. 

T / δt

V o {0} V o {δt }

Although multiplexing means that measurements can be made more
quickly and efficiently, wholly analog systems of this type are now rarely
used. This is partly because it can be difficult (and expensive) to arrange
for a large number of nominally identical switches and analog integrators,
but it is also because digital information processing techniques have
advanced rapidly over the last few decades. Modern synchronous
integration systems often use digital techniques to obtain, relatively
cheaply, a level of usefulness it would be difficult to match using analog
methods. As usual in information processing we can build various types of
digital and analog systems to perform a given function. The system shown
in figure 17.4 makes use of a circuit known as a voltage to frequency convertor
(VFC) to implement a digital synchronous integration system. This is a
device which produces an output square wave (or stream of pulses) whose
frequency or ‘pulse rate’ is proportional to the input voltage. At any time,
t, we can therefore expect the VFC to be producing pulses at a rate

f {t } = k f V {t } ... (17.14)
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Example of a digital system for performing multiplexedFigure 17.4
synchronous integration of a repetitive waveform.
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where  is a coefficient whose value depends upon the details of the VFC
circuit being used. The operation of this system depends upon how we
have programmed the computer. At the start of a measurement the
computer should ‘clear’ (i.e. set to zero) the numbers stored in the parts
of its memory which it will use for data collection. The computer then
waits until it receives a trigger from the clock which is initiating the pulses
to be measured (this can, if we wish, be the computer's own internal
clock). The computer then proceeds as follows:

k f

Firstly, the counter reading is zeroed. It is then allowed to count pulses
coming from the VFC for a time, , and the resulting number, , is
added into a memory location at some address, . The counter is then re-
zeroed, allowed to count for another period, , and the new result, ,
added into a memory location, . This process is repeated over and over
again until the whole signal cycle time, T, has elapsed. After one signal
cycle the system will have stored a set of binary numbers, , , etc, in its
memory. Each number will be approximately equal to

δt r 0

A0

δt r 1

A1

r 0 r 1

r j = k f ∫
 (j + 1)δt

j δt

V {t }  d t ... (17.15)

i.e. each number is proportional to the input voltage integrated over a
short period of time. We can now repeat this process n  times to obtain a
stored set of numbers,  , which, in the absence of any noise,
will approximate to

R0 ,  R1 ,  �
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R j = N r j = n k f ∫
 (j + 1)δt

j δt

V {t }  d t ... (17.16)

In effect, these stored numbers are proportional to the integrated signal
voltages at various times from the start of each signal cycle. They contain
the same information about the signal pattern as we could have collected
with an analog synchronous integration system. As with the analog system,
if we arrange for  to be small enough we can approximate the above
integral to

δt

R j = n k f δt V {t j} ... (17.17)

where . We can therefore use the collected  values to
determine the signal voltage at various times during each signal cycle.

t j = j  δt R j

The counted values are a digital equivalent of the voltages collected at the
output of a bank of analog integrators. Equation 17.17 is the ‘digital
equivalent’ of expression 17.4 for an analog system. Each count is
proportional to the input at the appropriate moment, . V {t j }

This digital approach has a number of advantages over the analog
technique. One particular advantage of the digital approach is that it is
relatively easy to buy and use a large amount of computer memory. For
example, we can imagine buying and using a single digital memory chip
capable of holding 128 kilobytes of information. If we allocate 16 bits (i.e.
two 8-bit bytes) to hold each  we can store a set of values which
represent integrated level measurements of the input signal shape at 64 ×
1024 = 65,536 moments during each pulse. As a result, one cheap digital
memory chip can replace over 65 thousand separate analog integrators!

R j

Summary
You should now understand how Synchronous Integration allows us to
recover the details of a weak, transient phenomenon by adding together
the information from a synchronised sequence of similar transient events.
That a Multiplexed system allows us to avoid the signal information losses
we get with a ‘single integrator’ system which tends to ignore most of the
signal most of the time. That we can build either analog or digital systems
to perform synchronous integration. You should now also see that the
combination of a Voltage to Frequency Convertor and a Counter act as a form
of integrator.
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