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Chapter 8 Energy and Power, Random Signals and
Noise

8.1 Energy and Power in Deterministic Signals

Consider a deterministic signal f(t). If we think of f(t) as a voltage, the instantaneous power that
it develops across a 1  resistor is

Pf (t) = jf(t)j2 (8.1)

We shall adopt this as our de…nition of the instantaneous power in a signal.

8.1.1 Signals of Finite Energy

The total energy in f(t) is then de…ned as the integral of Pf (t) over all time, i.e.,

Ef =

Z 1

¡1
jf(t)j2 dt =

Z 1

¡1
jF (º)j2 dº (8.2)

where F (º) is the Fourier transform of f(t) and we have used Rayleigh’s theorem in the last equality.

Signals for which E is …nite are said to be L2 functions or …nite energy signals. All …nite energy
signals vanish as t!§1.
We now wish to de…ne the energy contained within a band of frequencies within a signal. For
de…niteness, consider the band of frequencies º1 to º2. If we consider an ideal band-pass …lter with
system function

H(º) =

½
1 if º1 · º · º2
0 otherwise

(8.3)

we may think of passing f(t) through such a bandpass …lter which only lets through frequencies
within this frequency range and measuring the total energy in the output g(t) of such a …lter. We
…nd

Eg =

Z 1

¡1
jG(º)j2 dº =

Z 1

¡1
jF (º)H(º)j2 dº

=

Z º2

º1

jF (º)j2 dº (8.4)

From this, we see that it makes sense to call jF (º)j2 the energy spectral density of f(t) since its
integral over the range º1 to º2 gives the energy contained in this frequency range.

The inverse Fourier transform of the energy spectral density isZ 1

¡1
jF (º)j2 exp(j2¼º¿)dº =

Z 1

¡1

µZ 1

¡1
f(t) exp(¡j2¼ºt)dt

¶¤
F (º) exp(j2¼º¿)dº

=

Z 1

¡1
f¤(t)

µZ 1

¡1
F (º) exp(j2¼º(t+ ¿))dº

¶
dt

=

Z 1

¡1
f¤(t)f(t+ ¿)dt (8.5)
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This is called the energy auto-correlation function of f(t) and is denoted Áeff (¿). In general, we
de…ne the energy cross-correlation function of two deterministic …nite energy signals f(t) and g(t)
to be

Áefg(¿) =

Z 1

¡1
f¤(t)g(t+ ¿)dt (8.6)

when the two functions are the same, this reduces to the energy auto-correlation function

Áeff (¿) =

Z 1

¡1
f¤(t)f(t+ ¿ )dt (8.7)

We have thus shown that the energy spectral density is the Fourier transform of the energy auto-
correlation function, i.e.,

Áeff (¿)$ jF (º)j2 = ©eff (º)$ Áeff (¿) (8.8)

Exercise:

Show that the total energy is given by Áeff (0) and that for all ¿ , jÁeff (¿)j · Áeff (0). (Hint: Use the
Cauchy-Schwarz inequality).

8.1.2 Signals of Finite Power

Many signals of practical importance have in…nite total energy. Periodic signals are simple examples
of such signals. The Fourier transform of signals with in…nite energy are not absolutely square
integrable and often contain generalized functions. Such signals do not have energy spectral density
functions. We de…ne the average power in a signal to be

Pf = lim
T!1

1

T

Z T=2

¡T=2
jf(t)j2 dt (8.9)

Signals for which Pf is …nite are said to have …nite power.

For signals of …nite power, we de…ne power auto-correlation and power cross-correlation functions
analogously to the energy correlation functions de…ned above. The power cross-correlation function
of two deterministic …nite power signals f(t) and g(t) is de…ned to be

Ápfg(¿) = lim
T!1

1

T

Z T=2

¡T=2
f¤(t)g(t+ ¿ )dt (8.10)

similarly the power auto-correlation function of f(t) is

Ápff (¿) = lim
T!1

1

T

Z T=2

¡T=2
f¤(t)f(t+ ¿)dt (8.11)

From this de…nition, it is clear that the average power in f is given by Ápff (0).

We next want to show that the Fourier transform of the power auto-correlation function can be
interpreted as a power spectral density. In order to establish this result, we again consider passing
f(t) through an ideal bandpass …lter and look at the average power in the …lter output. This can
be done once we know how a linear …ltering operation a¤ects the correlation functions.
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8.1.3 Linear Filters and Correlation Functions

Theorem: If a …nite power signal f(t) is passed through a …lter with impulse response h(t) yielding
an output g(t) = (f ¤ h)(t), then

1. The cross-correlation of f and g and its Fourier transform are given by

Ápfg(¿) = (Á
p
ff ¤ h)(¿ ) (8.12)

©pfg(º) = ©
p
ff (º)H(º) (8.13)

2. The auto-correlation of g and its Fourier transform are given by

Ápgg(¿) = (Á
p
ff ¤ h ¤ ~h)(¿) (8.14)

©pgg(º) = ©
p
ff (º)jH(º)j2 (8.15)

where ~h is de…ned by ~h(t) = h¤(¡t).

Proof:

1. From the de…nition,

Ápfg(¿) = lim
T!1

1

T

Z T=2

¡T=2
f¤(t)g(t+ ¿)dt

= lim
T!1

1

T

Z T=2

¡T=2
f¤(t)

µZ 1

¡1
f(t+ ¿ ¡ u)h(u)du

¶
dt

=

Z 1

¡1

Ã
lim
T!1

1

T

Z T=2

¡T=2
f¤(t)f(t+ ¿ ¡ u)dt

!
h(u)du

=

Z 1

¡1
Ápff (¿ ¡ u)h(u)du = (Ápff ¤ h)(¿) (8.16)

The Fourier transform of this relationship yields ©pfg(º) = ©
p
ff (º)H(º).

2. Again from the de…nition, it is easy to show that

Ápgg(¿) = (Á
p
fg ¤ ~h)(¿) (8.17)

Substituting the previous result gives Ápgg(¿) = (Á
p
ff ¤h¤~h)(¿) and taking its Fourier transform

gives ©pgg(º) = ©
p
ff (º)jH(º)j2 since ~h(¿)$ H¤(º).

Note: This theorem also holds for signals of …nite energy if all the power correlations Áp are replaced
by energy correlations Áe.

8.1.4 The Power Spectral Density

Let us now return to the situation of passing a …nite power signal f(t) through an ideal bandpass
…lter with system function H(º) as de…ned in (8.3). As usual we denote the …lter impulse response



453.701 Linear Systems, S.M. Tan, The University of Auckland 8-4

by h(t) and the …lter output by g(t) = (f ¤ h)(t). The average power in g(t) is given by Ápgg(0).
Evaluating this in terms of its Fourier transform,

Ápgg(0) =

Z 1

¡1
©pgg(º)dº

=

Z 1

¡1
©pff (º)jH(º)j2 dº by the above theorem

=

Z º2

º1

©pff (º)dº (8.18)

Thus the average power in the output is just the integral of ©pff (º) in the range º1 to º2. This
justi…es calling ©pff (º) the power spectral density of f(t).

This leads to the following important general rule

The energy (power) spectral density is the Fourier transform of the
energy (power) auto-correlation function.

This result is known as the Wiener-Khinchin theorem. It also applies to signals with a random
component as will be discussed later.

8.2 Stochastic Processes

We now consider signals which are non-deterministic. These are useful in many applications, for
example in describing noise in electrical systems, the random motion of a particle undergoing
Brownian motion, the concentration of a certain chemical during the course of a reaction, the
motion of particles as they di¤use, the intensity of light from a partially coherent source etc. These
are generally called stochastic processes and are scalar or vector valued quantities which evolve in
time. Unlike a deterministic process for which there is a de…nite value for the quantity at each
instant of time, a stochastic process can only be described statistically. This is because we do not
want a stochastic process just to describe a particular situation which occurs when an experiment
is performed once but rather it should give information about the possible range of outcomes in
many realizations of the same experiment.

8.2.1 The Concept of an Ensemble

Let us consider how we might describe the Johnson noise voltage generated in a resistor which
is maintained at some nonzero temperature T . At a given instant of time, say at t = 0, a given
resistor will have a certain voltage across it but this value is not predictable. What we really want
to give is a probabilistic description of the possible voltages across the resistor at this time. To do
this, it is useful to imagine a whole collection of resistors, all maintained under identical conditions
and to look at the probability density formed by considering all their voltages at the same time
t = 0. This collection is called an ensemble. The probability density functions that we talk about
in stochastic processes always refer to probabilities de…ned over such an ensemble. It may be useful
to imagine a whole collection of parallel universes in which a physical situation is set up under the
same conditions (i.e., identical to within the constraints speci…ed by the problem) and to regard
the ensemble as being composed of these “copies” of the system of interest. When we focus on a
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system in a particular universe, the process that it undergoes is said to be a single realization of
the stochastic process.

Once we think about an ensemble of “potential realities”, it makes sense to regard the voltage
at a given time, say x(0), as being a random variable. (From now on, we shall discontinue the
convention of using capital letters to distinguish random variables from the values that they can
take.) We can then consider the probability density function for x(0) and statistics such as the
mean and variance of this random variable. The notation p(x; 0) is often used for the probability
density of x at time t = 0. The mean and variance of x(0) are then given by

E [x (0)] =
Z 1

¡1
xp(x; 0)dx (8.19)

E
h
x (0)2

i
=

Z 1

¡1
(x¡ E [x (0)])2p(x; 0)dx (8.20)

=

Z 1

¡1
x2p(x; 0)dx¡

µZ 1

¡1
xp(x; 0)dx

¶2
(8.21)

The expectation value symbol E[¢] is usually used to refer to an ensemble average. In a similar way
we can de…ne higher order moments of the random variable.

8.2.2 Characterizing a Stochastic Process

In general, characterizing a stochastic process is quite complicated. We have seen that at each
instant of time, the value of the stochastic process is a random variable. We thus need an in…nite
number of probability densities p(x; t) (one for each t) just to describe the process at each instant
time. Further thought shows that even this in…nite collection is not enough to fully describe the
process. For example, we may be interested in the joint probability density for the voltage at two
times t1 and t2. This will be speci…ed by a probability density of the form p(x1; t1;x2; t2). These
two-time probability densities tell us whether knowledge about the process at time t1 gives us any
knowledge about the process at time t2. These two-time probability densities form a doubly in…nite
set of joint probability densities. Similarly, we may consider the joint probability function for the
values of the process at n distinct times. All of these functions for all values of n are usually
assumed to be su¢cient to characterize the process. Processes for which this is possible are said to
be separable.

The need to specify such a large number of probability density functions to characterize a general
stochastic process means that such processes are seldom studied. Instead, special cases are consid-
ered in which all the joint probability functions can be calculated in terms of simpler quantities.
As an example, if the values of the process at di¤erent times are known to be independent, all joint
probability densities factorize into a product of single-time probability densities.

8.2.3 Mean, auto-correlation and auto-covariance functions of a stochastic process

Corresponding to the moments of a random variable, we de…ne correlation functions of a stochastic
process. These functions are all de…ned in terms of ensemble averages over all possible realizations
of the process. The mean of the process is

¹x(t) = E [x (t)] =
Z 1

¡1
xp(x; t)dx (8.22)

Note that there is a mean for each t since we are not averaging over time but across the ensemble
for each time.
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The two-time auto-correlation function is

Áxx(t1; t2) = E [x (t1)x (t2)] =
Z 1

¡1

Z 1

¡1
x1x2 p(x1; t1;x2; t2)dx1dx2 (8.23)

and the two-time auto-covariance function is

°xx(t1; t2) = E [(x (t1)¡ ¹x (t1)) (x (t2)¡ ¹x (t2))] (8.24)

Note: For complex-valued stochastic processes, we take the complex conjugate of the value at t1 in
the above de…nitions.

Similarly, the n-time auto-correlation function is

Áxx:::x(t1; t2; :::; tn) = E [x (t1)x (t2) : : : x (tn)] (8.25)

=

Z 1

¡1

Z 1

¡1
:::

Z 1

¡1
x1x2:::xn p(x1; t1;x2; t2; :::;xn; tn)dx1dx2 : : : dxn

and the n-time auto-covariance function is

°xx:::x(t1; t2; :::; tn) = E [(x (t1)¡ ¹x (t1)) (x (t2)¡ ¹x (t2)) : : : (x (tn)¡ ¹x (tn))] (8.26)

The collection of the mean and all the auto-correlation functions are usually assumed to completely
characterize the stochastic process. Note that all these functions are deterministic even though they
are calculated from the stochastic process.

8.2.4 Markov Processes

In physics, an important class of stochastic processes are the Markov processes. In a Markov process,
the conditional probability for any event in the future given a set of values at times t1 > t2 > ::: > tn
is the same as the conditional probability of that event given the value at the most recent time t1.
For example,

p(x; tjx1; t1;x2; t2; :::;xn; tn) = p(x; tjx1; t1) (8.27)

where t > t1 > ::: > tn. In other words, knowledge of the process at the set of times t1; t2; :::; tn
gives us no more useful information for predicting the future evolution of the process than the
knowledge of the process at the most recent time t1.

As a simple example of a Markov process, consider counting the number of particles that a radioac-
tive material has produced from some time origin up to a given time t. Since the probability of
decay per unit time is constant, our ability to predict the number of decays up to time t given that
there have been n decays up to time t1 < t is completely independent of the history of decays up
to t1. On the other hand, if the decays occur with a constant delay between successive events, this
is not a Markov process. Given that there have been n decays up to time t1, we would predict a
di¤erent number of decays by time t depending on exactly when the last decay occurred.

For a Markov process, arbitrary time-ordered joint probabilities can be evaluated as a product of
transition probabilities. For example, if t1 > t2 > t3,

p(x1; t1;x2; t2;x3; t3) = p(x1; t1jx2; t2;x3; t3) p(x2; t2jx3; t3) p(x3; t3)
= p(x1; t1jx2; t2) p(x2; t2jx3; t3) p(x3; t3) (8.28)

Thus a complete description of a Markov process involves the speci…cation of an initial condition
p(x0; t0) together with its transition probability density function p(x; tjx0; t0).
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The transition probability density function for a Markov process cannot be speci…ed completely
arbitrarily but must satisfy a consistency requirement called the Chapman-Kolmogorov equation

p(x1; t1jx3; t3) =
Z 1

¡1
p(x1; t1jx2; t2) p(x2; t2jx3; t3)dx2 (8.29)

for any t2 satisfying t1 > t2 > t3. The Chapman-Kolmogorov equation can be written as a di¤er-
ential equation for p(x; tjx0; t0). Special cases of this di¤erential equation are known as the Master
equation, the Liouville equation and the Fokker-Planck equation which are of great importance
in the theory of stochastic processes (see for example Handbook of Stochastic Methods by C.W.
Gardiner).

8.2.5 Stationary, Wide-sense Stationary and Ergodic Processes

Another way in which a general stochastic process may be simpli…ed is if its statistics are indepen-
dent of the choice of the time origin. Such a process is said to be stationary. Instead of an in…nity
of one-time probability densities p(x; t), one for each t, a stationary process has a single probability
density p(x). The mean of a stationary random process is a single value rather than a function of
time. Similarly the n-time joint probability density satis…es

p(x1; t1;x2; t2; :::;xn; tn) = p(x1; t1 + u;x2; t2 + u; :::;xn; tn + u) (8.30)

for any u. The two-time auto-correlation and auto-covariance functions now depend on the time-
di¤erence only and we may write, for example

Áxx(¿) = E [x¤ (t)x (t+ ¿)]

=

Z 1

¡1

Z 1

¡1
x¤1x2p(x1; t;x2; t+ ¿)dx1dx2 (8.31)

where the result is independent of t due to the stationarity of the process.

In order for a stochastic process to be stationary the auto-correlation functions of all orders must
be independent of the time origin. If only the mean and the two-time auto-correlation function
have this property, the process is said to be wide-sense stationary. In practice, it is usually only
feasible to verify wide-sense stationarity.

Exercise: Show that a wide-sense stationary Markov process is in fact stationary.

For a stationary process, it is sometimes possible that ensemble averages can be replaced by time
averages over a single realization of the process. For example, calculating the mean of a single
realization by averaging over time may give the same answer as an ensemble average. Similarly
we may try to use the de…nition of the power auto-correlation (8.11) for a single realization as
a way of calculating the stationary auto-correlation (8.31). Processes for which this is possible
are said to be ergodic. All ergodic processes are stationary but the converse is not always true.
For many physical processes, we make the assumption that the process is ergodic despite the fact
that it may not be possible to prove that this holds. As a simple example of a non-ergodic process,
consider an ensemble consisting of a collection of batteries and the process being the battery voltage.
Measurements on a single battery as a function of time gives no information about the statistical
properties of the ensemble.
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8.3 Power Spectrum of a Stationary Stochastic Process

For a stationary stochastic process x(t), we de…ne the average power by

Px = E
h
x (t)2

i
(8.32)

Despite the fact that the right-hand side contains the variable t, it is in fact independent of t by
stationarity. We similarly de…ne the (stationary two-time) auto-correlation and cross-correlation
functions by

Áxx(¿) = E [x¤ (t)x (t+ ¿)] (8.33)

Áxy(¿) = E [x¤ (t) y (t+ ¿)] (8.34)

Both of which are independent of t. It should be emphasized again that these correlation functions
are deterministic and are a property of the whole ensemble - they do not vary from one realization
to another.

It is easy to see that if we pass a stationary stochastic process x(t) through a …lter with impulse
response h(t) yielding y(t) = (x ¤ h)(t), the two-time cross-correlation of x and y is

Áxy(t1; t2) = E [x¤ (t1) y (t2)]

= E
·
x¤(t1)

Z 1

¡1
h(¿)x(t2 ¡ ¿)d¿

¸
=

Z 1

¡1
h(¿)E [x¤ (t1)x (t2 ¡ ¿)] d¿

=

Z 1

¡1
h(¿)Áxx(t2 ¡ t1 ¡ ¿)d¿ = (Áxx ¤ h)(t2 ¡ t1) (8.35)

where we adopt the convention that a two-time correlation function with only one argument indi-
cates an explicitly stationary correlation. Since Áxy(t1; t2) is a function of t2¡ t1 alone, it is in fact
a stationary correlation and we can write

Áxy (¿)=(Áxx ¤ h) (¿) (8.36)

Similarly

Áyy (¿)=
³
Áxy ¤ ~h

´
(¿) =

³
Áxx ¤ h ¤ ~h

´
(¿) (8.37)

where ~h(t) = h¤(¡t). Following the same line of argument as was presented for power correlation
functions of deterministic signals, it should be clear that the Fourier transform ©xx(º) of the
stationary auto-correlation function Áxx(¿) is the power spectral density of the stochastic process
x(t).

It is important to notice that the power spectrum of a stochastic process depends on the correlation
between the noise values at di¤erent times and not on the probability density function of the noise
at a given time. In particular, it is not necessary that noise have a Gaussian probability density
at each time, although Gaussian noise is probably the most common. If Gaussian noise is passed
through any linear …lter, the output is still Gaussian noise but in general the spectrum of the output
will be di¤erent from that of the input.
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8.3.1 White Noise

A stationary noise process is said to be white if its power spectral density is constant. If the power
per unit bandwidth is N0Wm¡2, this corresponds to having

©xx(º) =
N0
2

(8.38)

The factor of two is present because a range of frequencies fa to fb over which the noise power is
measured corresponds to the union of the intervals [fa; fb] and [¡fb;¡fa] in the two-sided power
spectral density.

We see that the autocorrelation function of white noise is

Áxx(¿) =
N0
2
±(¿) (8.39)

Assuming that the process has zero mean, this shows that the values of the process at any two dis-
tinct times are uncorrelated. This represents an idealization since it implies that the instantaneous
power Áxx(0) is in…nite so that the value of the process at each time can be arbitrarily large. This
should not be too surprising since a ‡at power spectral density corresponds to in…nite power when
integrated over all frequencies.

In practice the power spectral density always tends to zero for su¢ciently high frequencies. The
model of white noise is useful if we are only interested in a frequency range over which the power
spectral density is approximately constant.

Sampling a white noise process directly is not meaningful since the variance of each sample is
in…nite. For theoretical purposes, if we sample with a time interval of T , it is convenient to think
of pre…ltering the process using an ideal lowpass …lter which cuts o¤ at the Nyquist frequency
1=(2T ). It can be shown that if zero-mean white noise with ©xx(º) = N0=2 is fed into such a …lter,
the samples taken at these times are uncorrelated random variables with zero mean and variance
N0=(2T ). In particular, if the input noise is Gaussian, the sample values are independent identically
distributed Gaussian random variables.

Exercise: By considering the impulse response of the ideal low-pass …lter and the autocorrelation of
the output of the …lter at lags kT for integer values of k, con…rm that the samples are uncorrelated
and have the variance stated above.

8.4 Signals in Noise

We are often interested in observing known signal pulses embedded within a stationary noise pro-
cess. If x(t) is the deterministic signal and n(t) represents a realization of a noise process, the
received signal y(t) satis…es

y(t) = x(t) + n(t) (8.40)

There are many ways of de…ning the signal to noise ratio (SNR) depending on the application,
but for the purposes of signal detectability (i.e., seeing the signal within the noise), a convenient
de…nition is

SNR =
Peak signal power
Total noise power

(8.41)

For example, if x(t) is a toneburst with amplitude A, the peak signal power is A2 and if the noise
power spectral density is ©nn(º) the total noise power is its integral over all frequencies of interest.



453.701 Linear Systems, S.M. Tan, The University of Auckland 8-10

8.4.1 Matched …ltering

We wish to investigate what is the “best” …lter to pass y(t) through if we wish to optimize the
detectability of the (known) signal x(t) in the midst of noise n(t) of known power spectral density
©nn(º). We shall assume that we are not interested in preserving the shape of x(t) but wish to
maximize the signal to noise ratio as de…ned above.

Let us suppose that the …lter through which y(t) is passed has impulse response h(t). Using the
usual convention that the function denoted by an upper-case letter refers to the Fourier transform
of the function denoted by the lower-case letter, the …lter output g(t) is given by

g(t) =

Z 1

¡1
H(º)Y (º) exp(j2¼ºt)dº (8.42)

We shall design the …lter to give a maximum output at some time t = t0. Since y is composed of
signal x and noise n, we consider the e¤ects on each of these separately. The peak signal power in
the output is given by the peak of the …ltered signal, i.e.,

Peak signal power =

¯̄̄̄Z 1

¡1
H(º)X(º) exp(j2¼ºt0)dº

¯̄̄̄2
(8.43)

The …ltered noise has power spectral density ©nn(º)jH(º)j2. The total noise power in the output
is

Total noise power =
Z 1

¡1
©nn(º)jH(º)j2 dº (8.44)

Thus the signal to noise ratio which we wish to maximize is

SNR =

¯̄̄R1
¡1H (º)X (º) exp (j2¼ºt0) dº

¯̄̄
R1
¡1©nn (º) jH (º)j2 dº

(8.45)

To carry out this maximization, recall the Cauchy-Schwarz inequality which states that for any two
functions U(º) and V (º),¯̄̄̄Z 1

¡1
U(º)V (º)dº

¯̄̄̄2
·
Z 1

¡1
jU(º)j2 dº

Z 1

¡1
jV (º)j2 dº (8.46)

where equality holds if and only if U(º) = kV ¤(º) where k is a constant. If we identify

U(º) =
p
©nn(º)H(º) (8.47)

V (º) =
X (º) exp (j2¼ºt0)p

©nn (º)
(8.48)

and substitute into the Cauchy-Schwarz inequality, we …nd after minor rearranging that

SNR =

¯̄̄R1
¡1H(º)X(º) exp(j2¼ºt0)dº

¯̄̄2R1
¡1©nn(º)jH(º)j2 dº

·
Z 1

¡1
jX(º)j2
©nn(º)

dº (8.49)

We notice that the right hand side is independent of H(º) and gives an upper bound for the
attainable signal to noise ratio. The signal to noise ratio is maximized when equality holds. This
happens if

p
©nn(º)H(º) = k

"
X(º) exp(j2¼ºt0)p

©nn(º)

#¤
(8.50)
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or

H (º) =
kX¤ (º) exp (¡j2¼ºt0)

©nn (º)
(8.51)

The maximum signal to noise ratio is then given by

(SNR)max =
Z 1

¡1
jX(º)j2
©nn(º)

dº (8.52)

Equations (8.51) and (8.52) de…ne the Middleton-North matched …lter which is of importance in
the design of signal detection systems (e.g., radar and sonar). Notice how the amplitude of the
frequency response of the …lter jH(º)j is large where jX(º)j is large and Pnn(º) is small. Intuitively,
the …lter lets through the signal and rejects the noise as well as it can.

Now consider the special case of white stationary noise for which ©nn(º) = N0=2. In this case we
…nd that

H(º) =
2k

N0
X¤(º) exp(¡j2¼ºt0) (8.53)

and

(SNR)max =
2

N0

Z 1

¡1
jX(º)j2 dº (8.54)

1. We see that the optimum signal to noise ratio is proportional to the signal energy and inversely
proportional to the noise power spectral density.

2. The …lter impulse response is the inverse Fourier transform of H(º). We see that

h(t) =
2k

N0
x¤(t0 ¡ t) (8.55)

This is just the signal x(t) conjugated, reversed in time and delayed by t0. The value of k is
arbitrary since it only a¤ects the overall amplitude and not the signal to noise ratio.

3. As a result of passing the signal component through the matched …lter, its shape is changed.
In fact

(x ¤ h)(t) = 2k

N0
(x(t) ¤ x¤(t0 ¡ t)) = 2k

N0
Áexx(t¡ t0) (8.56)

Thus in the absence of noise, the output of the matched …lter is a scaled and delayed version
of the energy autocorrelation function of the signal. The peak of this is at t0.

4. The matched …lter can be implemented digitally using a shift register as a delay line to carry
out the convolution.

When choosing a signal for matched …ltering, it is usually best to …nd one with a highly peaked
autocorrelation. If the time of arrival of the signal is not known (e.g. an echo from a target), the
peak of the matched …lter output may be used to give an estimate. A signal which is often used is
a chirp which has a linearly swept carrier frequency.

º = º0 + ¹t (8.57)
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The phase is the integral of the frequency with respect to time and so the form of the chirp could
be

x(t) = sin

·
2¼

µ
º0t+

1

2
¹t2
¶¸

(8.58)

The following MatLab code illustrates matched …ltering with a chirp signal. The function filter
carries out the discrete convolution using a digital …lter.

%
% MATCHED.M illustrates matched filtering with the Middleton-North filter
%
t = linspace(0,1,256);
s = sin(2*pi*(2*t+5*t.^2)); % Set up chirp
%
tbase = [0:1023]*(t(2)-t(1));
x = zeros(size(tbase));
x(1:length(s)) = s; % Put chirp at start of frame
h = conj(s(length(s):-1:1)); % Impulse response of matched filter
%
y = x + randn(size(x)); % Corrupt signal with uncorrelated noise
%
% Show result with no noise
%
g = filter(h,1,x); % Matched filter
subplot(4,1,1); plot(tbase,x); % Clean signal
title(’Noise-free signal’);
subplot(4,1,2); plot(tbase,g); % Matched filter output
title(’Matched filtered output’);
%
% Matched filtering of noisy signal
%
g = filter(h,1,y); % Matched filter
subplot(4,1,3); plot(tbase,y); % Noisy signal
title(’Noisy signal’);
subplot(4,1,4); plot(tbase,g); % Matched filter output
title(’Matched filtered output’);

The results of this program are shown in Figure 8.1. The signal is clearly seen in the midst of the
noise after applying the matched …lter.

8.4.2 Coherent Averaging

A very simple yet powerful technique for improving the signal-to-noise ratio when investigating the
response of a time-invariant system to a signal is the process of coherent averaging. A repetitive
signal is sent in time frames and the responses are added together coherently.

Suppose that the peak signal amplitude is A and the noise power is ¾2. The signal to noise ratio
for one frame is then

(SNR)1 frame = A2=¾2 (8.59)
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Figure 8.1 Middleton-North matched …lter

As a result of adding together L frames, the signal amplitudes add because they are coherent
whereas the noise powers add because they are incoherent. The signal to noise ratio after L frames
is thus

(SNR)L frames = (LA)2=(L¾2) = L£ (SNR)1 frame (8.60)

If L can be made large (this usually depends on the timescale on which the system may be regarded
as being time-independent), we can get substantial enhancement in the signal to noise ratio.

The ratio of signal to noise energies in a time frame can be estimated by a process called double-
period averaging. If two frames are of duration T and contain y1(t) and y2(t) we …nd the energies

E+ =

Z T

0
jy1(t) + y2(t)j2 dt (8.61)

E¡ =
Z T

0
jy1(t)¡ y2(t)j2 dt (8.62)

We assume that the contents of the frames can be written as a deterministic signal together with
noise which is di¤erent between the frames, i.e.,

y1(t) = x(t) + n1(t) and y2(t) = x(t) + n2(t) (8.63)
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Then if Es denotes the signal energy and En the expected noise energy, we see that the expected
values of E+ and E¡ are

E+ = 4Es + 2En and E¡ = 2En (8.64)

Hence

Es
En

=
1

2

µ
E+
E¡

¡ 1
¶

(8.65)

This may then be used to estimate the signal to noise ratio.


