
Sampling Theory 101 

This document is a short overview of some aspects of sampling theory which are essential for 
understanding the problems of Volume Rendering, which can be viewed as nothing but resampling a 
data set obtained from sampling some unknown function. 

Prerequisite for this document is a basic understanding of Fourier Analysis on an intuitive level. You 
have to know that a function f(x) in the spatial (or time) domain has a counterpart F(f) in the frequency 
domain. Any function satisfying some simple properties can be written as a weighed sum of harmonic 
functions (shifted and scaled sine curves), and (F(f))(s), called the Fourier transform or spectrum of f, 
gives the weight of the harmonic function of frequency s in f.  

Functions and Their Fourier Transforms 

The process of finding the weighs of the harmonic components of a function is called Fourier Analysis, 
the opposite process of summing the harmonic components to reconstruct a function is called Fourier 
Synthesis. In our functional nomenclature, Fourier Analysis means applying the F function, Fourier 

Synthesis means applying its inverse F-1. Figure 1 shows a function f and its Fourier transform F(f). 

As it turns out, the operators F and F-1 are identical up to a minus sign; thus, Fourier Analysis and 
Fourier Synthesis are almost symmetrical operators. This means, if a function of some "shape" has a 
certain Fourier transform, the Fourier transform of the Fourier transform (the latter one being interpreted 
as a spatial domain function again) has the same "shape" as the original function. 

The following paragraphs introduce some basic functions which turn out to be important for sampling 
theory:  

The Dirac Impulse 

The Dirac impulse d
x0
 is not exactly a function, but it has a well-defined Fourier transform, and hence 

strong enough mathematical backing to be considered here. The Dirac impulse is a function that is zero 
for any x != x0, and its overall integral is one. This means, the function value d

x0
(x0) cannot be finite, 

Figure 1: A function f and its Fourier transform F(f). Both the function and its Fourier 
transform are complex-valued, but in graphs like this only the magnitudes of the functions are 
shown.
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but we don't care too much about that here. 

Mathematically, the Dirac impulse is defined as the limit of a series of narrower and narrower functions, 
constantly having an integral of one. In diagrams, a Dirac impulse d

x0
 is drawn as a single peak at x0 of 

height one, sometimes with an arrow to emphasize its "infiniteness". (We don't follow this convention 
here.)  

The Dirac impulse (or, more precise, a pair of those) shows up as the Fourier transform of a single 
harmonic function (like a sine curve), see Figure 2. After all, a single harmonic consists of exactly one 
harmonic component; this fact can conveniently be expressed by Dirac impulses. (Why a pair? Because 
the magnitude of the Fourier transform of a real-valued function is always symmetrical with respect to 
the axis s = 0.)  

Comb Functions 

A comb function c
w
 is an infinite series of equidistant Dirac impulses, where adjacent impulses are a 

distant of w apart. Surprisingly, the Fourier transform of a comb function c
w
 is another (scaled) comb 

function c
w'
, where w' = 2*pi/w, see Figure 3. 

Figure 2: The Fourier transform of a harmonic of frequency w is a pair of Dirac impulses d
-w
 

and d
w
.
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Operators on Function Spaces 

For sampling theory applications, especially Volume Rendering, functions and their Fourier transforms 
are not very interesting by themselves. In order to be applicable, we have to be able to express common 
sampling operations as operations on function spaces. 

The two most interesting operations on functions are pointwise multiplication and convolution.  

Pointwise Multiplication 

Assuming that f
1
 and f

2
 are two functions defined over the same domain, the pointwise product f = f

1
 f
2
 

is defined by f(x) = f
1
(x) * f

2
(x). In other words, the pointwise product is defined by multiplying the two 

functions point-by-point (pretty straightforward, that!). 

Convolution 

The convolution operator is a bit more complicated. If f
1
 and f

2
 are two functions defined over the set of 

real numbers, the convolution f = f
1
 * f

2
 is defined as the integral f(x) = S 

-oo
oo f

1
(t) * f

2
(x - t) dt. 

Maybe this visualization helps understanding the process: For each point x, the function f
1
 and a mirror-

image of f
2
 are overlayed with a displacement of x, and the pointwise product of these two functions is 

integrated over the whole real line.  

On second thought, maybe this isn't that helpful after all. But in the special case of one of the functions 
being a sum of Dirac impulses (e.g., a comb function), it is easier: The convolution f * c

w
 consists of 

infinitely many copies of f, each two adjacent ones being w apart, and then all added up, see Figure 4.  

Figure 3: The Fourier transform of a comb function c
w
 is a scaled comb function c

w'
, where w' 

= 2*pi/w.
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The Duality of Pointwise Multiplication and Convolution 

The treatment of pointwise multiplication and convolution raises an interesting question: If the Fourier 
transforms of f

1
 and f

2
, F(f

1
) and F(f

2
), are known, what are the Fourier transforms of f

1
 f
2
 and f

1
 * f

2
? 

The (hopefully not) surprising answer is: The Fourier transform of the pointwise product of two 
functions is the convolution of the two Fourier transforms, F(f

1
 f
2
) = F(f

1
) * F(f

2
), and the Fourier 

transform of the convolution of the two functions is the pointwise product of the two Fourier transforms, 
F(f

1
 * f

2
) = F(f

1
) F(f

2
).  

In other words, convolution in the spatial domain is equivalent to pointwise multiplication in the 
frequency domain, and vice versa. The two operators are dual to each other.  

The Sampling Process Seen Mathematically 

With the prerequisites out of the way, we can now express the process of sampling a continuous 
function in mathematical terms, and can hence understand the limitations of the process. 

Sampling a function f(x) on a regular grid means representing the continuous function by a discrete set 
of function values f(x

1
), f(x

2
), f(x

3
), ... If all pairs of adjacent sample position are a distance w apart, this 

can be expressed by multiplying f pointwise with a comb function c
w
, see Figure 5.  

Figure 4: The convolution of a function f and a comb function c
w
 consists of the sum of 

mirrored copies of f, shifted and scaled by the Dirace impulses defining c
w
.
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Reconstructing a Sampled Function 

Now that we have seen how to express the sampling process in terms of function space operators, how 
can the reconstruction process be formalized? To answer this, we have to understand how sampling a 
function affects its Fourier transform. 

As we know, multiplying two functions point-by-point is equivalent to convolving the two functions' 
Fourier transforms. The Fourier transform of a comb function is another comb function, thus the Fourier 
transform of the sampled function is the Fourier transform of the original function, "replicated" 
infinitely often by the comb, see Figure 6.  

Figure 5: A function f is sampled by multiplying it with a comb function c
w
. The result of 

sampling is a (discrete) sum of scaled Dirac impulses, which can be represented by a discrete 
set of weights - the sampled data set.
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Aliasing and Shannon's Theorem 

The fact that the spectrum of a sampled function f is replicated has considerable impact on the sampling 
process. In order to be able to uniquely reconstruct the original function from its sampled version, the 
original spectrum and the replications must not overlap. 

If the spectra do overlap, the Fourier transform only contains the sum of the two overlapping parts, see 
Figure 7. As it is impossible to uniquely reconstruct the values of x and y from the equation x + y = 4, it 
is impossible to reconstruct the original spectrum in case the replicated copies overlapped. This implies 
that it is also impossible to reconstruct f itself from the sampled data set - there is a one-to-one 
relationship between functions and their Fourier transforms; if one could be reconstructed, the other one 
could be as well.  

Figure 6: A function f and its Fourier transform F(f). After sampling, the spectrum F(f) is 
replicated infinitely often in both directions.
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Taking this effect into account, it follows that a function can be uniquely and accurately reconstructed 
from its sampled version, if no two adjacent replications of the original spectrum overlap. 

This can be stated in a simpler way: The distance between two adjacent replications is 2*pi/w, where w 
is the distance parameter of the comb function c

w
 used for sampling f. Thus, two adjacent replications do 

not overlap, if all components of the original spectrum F(f) for frequencies larger than or equal to pi/w 
are equal to zero.  

A function which has the above property, i.e., that has a certain s0 such that all frequency components 
above the frequency s0 are zero, is called s0-frequency-limited.  

Noting that 2*pi/w is the number of "cycles" of the sampling comb function per unit length, in other 
words, the sampling frequency, we conclude that in order to sample an s0-frequency-limited function, 
we have to sample with a frequency larger than 2 * s0. This simple observation is called Shannon's 
theorem, and the critical sampling frequency of 2 * s0 is often called Nyquist rate.  

In yet other words: In order to faithfully sample a function f, we have to sample with more than twice 
the frequency of the highest-frequency component of f.  

If we sample below the Nyquist rate (referred to as undersampling), the replicated spectra will overlap; 
if we then go ahead and try to reconstruct the function anyway, the result will be different from the 
original, see Figure 8. This phenomenon is appropriately called aliasing.  

Figure 7: If the original spectrum of f and the copies introduced by the sampling process overlap, it 
becomes impossible to reconstruct the original spectrum, and hence it becomes impossible to 
reconstruct f itself.
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Optimal Reconstruction: The sinc Filter 

Knowing that a function f can be reconstructed from its sampled version if sampling above the Nyquist 
rate is nice, but how does one actually do it? The answer is quite simple: The only difference between f 
and its sampled version is that f's spectrum has been replicated by the sampling process. Just getting rid 
of the replications will exactly reconstruct f in its original form! 

The easiest way to erase the replicated spectra is to multiply the Fourier transform of the sampled 
version of f by a box filter. A box filter is a function b

w
(s) that is one for -w <= s <= w and zero 

otherwise. If sampling was done (above the Nyquist rate) by a comb function c
w
, the original spectrum 

of f will stretch at most from -pi/w to pi/w.  

Multiplying the sampled spectrum point-by-point with the box filter b
pi/w
 will extract the original 

spectrum from the sampled version; then we only have to calculate the inverse Fourier transform of the 
box-filtered spectrum, and, if we did in fact sample above the Nyquist rate, this will exactly reconstruct 
f, see Figure 9.  

Figure 8: Sampling a function f below its Nyquist rate will result in aliasing when trying to 
reconstruct the function as g. Note that f and g have identical values at the sample positions.
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There is a slight problem with this approach, though: Its result is purely theoretical. In real life, 
functions are not given analytically; this means, the original spectrum is also unknown, and the inverse 
Fourier transform cannot be calculated. Under this constraint, the only operations we can apply to our 
functions are in the spatial domain. But wait - we already know that multiplying a spectrum by a box 
filter is equivalent to convoluting a function with the box filter's inverse Fourier transform (a filter's 
spatial-domain version is often referred to as filter kernel)! 

This is true, but it doesn't help much either. As it happens, the filter kernel of a box filter is a sinc 
function (sin(x) / x), see Figure 10; a sinc function has infinite support, meaning that in order to calculate 
the convolution of the sinc function and the sampled version of f, even to reconstruct a single function 
value, would involve summing up infinitely many shifted and scaled sinc functions.  

Figure 9: Reconstructing a function from its sampled version using a box filter.
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The bottom line is: Optimal reconstruction is possible, but not practical. Which other reconstruction 
filters could we use? The most obvious, and hence most often used, reconstruction method is linear 
interpolation. As we'll see, it is also the second-worst method possible - it is only surpassed by constant 
interpolation, i.e., setting values of points between samples to the value of the nearest sample, often 
called nearest-neighbour reconstruction. 

Why is Linear Interpolation Bad? 

To see why linear interpolation is a bad choice of a reconstruction filter, we have to find out how it 
affects the spectrum of the sampled function. In the language of function space operators, linear 
interpolation can be expressed as convolving the sampled function with a triangle function t

w
, see 

Figure 11. The triangle function is zero for x < -w or x > w, rises linearly to one for x = 0, and the drops 
to zero again for x = w. In works on sampling theory, the triangle filter is often referred to as Bartlett 
filter. 

When reconstructing a function from its sampled version using linear interpolation, the scaled comb 
function representing the sample set is convolved with the triangle function of the same distance 
parameter. This can be visualized as erecting scaled versions of the triangle function, centered at each 
sampled position, and summing them all up, see Figure 12. 

Figure 10: The box filter b
w
 and its filter kernel, a scaled sinc function.

Figure 11: The triangle function t
w
 and its spectrum, a scaled sinc2 function.
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Convolving a sampled function with a triangle function in the spatial domain is equivalent to 
multiplying the functions' spectra. As can be seen from Figure 12, the triangle function's spectrum does 
not at all look like a box filter - the spectrum's magnitude at the intended "cut-off" frequency of w/pi is 
still 40% of its maximal magnitude, and the magnitude does not drop to zero until twice the cut-off 
frequency, at s = 2*w/pi. 

This means, that reconstructing a function using a Bartlett filter does not separate the original spectrum 
from the replications, as would be necessary for faithful reconstruction. Furthermore, the triangle 
function's spectrum has infinite support, meaning that the reconstructed function has components of 
arbitrarily high frequencies, as obvious by the sharp "corners" between adjacent straight line segments.  

Linear interpolation does an especially bad job of reconstructing a function when the function was 
sampled only slightly above its Nyquist rate. In that case, the original spectrum and the reconstruction 
almost overlap, and as the Bartlett filter cannot separate at the Nyquist rate, the reconstructed function is 
seriously distorted. An extreme example is sampling a single harmonic at slightly more than twice its 
frequency, see Figure 13.  

Figure 12: Reconstructing a function using linear interpolation. As visible from the spectrum 
graph, the Bartlett filter not only does not separate the original spectrum from the replications, it 
also aliases high-frequency components into the reconstruction due to its infinite support.
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The distortions visible in Figure 13 are not due to aliasing - the function was correctly sampled above its 
Nyquist rate, so Shannon's theorem states that it could be reconstructed using a box filter. This fine point 
is lost on a lot of people though; some misunderstand these artifacts as aliasing and apply the seemingly 
obvious solution - cranking up the sampling rate by a factor of two. 

Increasing the sampling rate does improve the reconstruction, there is no arguing about that, but this fact 
has nothing to do with sampling theory or Shannon's theorem, as often stated. It is the result of basic 
theorems of Fourier Analysis. If the sampling rate is increased, the triangle function becomes more and 
more narrow; this in turn makes the Bartlett filter wider and wider. Also, the original spectrum of the 
sampled function and its replications move farther and farther apart, see Figure 14. These combined 
facts increase the reconstruction quality. In theory, as the sampling rate approaches infinity, the 
reconstructed function approaches the original. But again, doubling the sampling rate does not solve the 
problem, it only makes it slightly less bad.  

Figure 13: Sampling a sine function slightly above the Nyquist rate. The used linear 
interpolation reconstruction filter destroys the result, because the Dirac impulses making up the 
sine function's spectrum almost run into each other, being almost cancelled out in the process.
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Practical Reconstruction Filters 

After this rant against linear interpolation and the common misconception of Shannon's theorem it 
induces, let us look at some working reconstruction filters. As we found out, the perfect solution (the 
box filter) is not practical; what else is there to use? 

The main problem is the following: We need a filter that cuts off unwanted replications of spectra in the 
frequency domain, but distorts the wanted spectrum as little as possible. This means, we want a near-
perfect low-pass filter. The problem lies in the theory: Fourier Analysis allows us to prove that any near-
perfect low-pass filter has infinite support in the spatial domain, and is thus not computable.  

A good compromise would be a filter that drops to zero "reasonably fast" beyond the pi/w cut-off line, 
and drops to zero reasonably fast in the spatial domain as well, to make calculating the convolution 
feasible.  

The Truncated Box Filter 

One idea springs readily to mind: The box filter's problem is the infinite support of its filter kernel, the 
sinc function. This infiniteness renders computing the convolution with the sampled function 
impossible. Why not overcome this limitation by truncating the filter kernel, to limit it to finite support? 
After all, the values of the sinc function approach zero when moving in positive or negative x-direction - 

Figure 14: Doubling the sampling rate improves the reconstruction quality, but it is in no way a 
magic solution, as (wrongly) applying Shannon's theorem might suggest.
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truncating it at some point will not change the filter too much. Won't it? 

What does truncating a filter kernel mean, in our mathematical model of Fourier Analysis? Truncating a 
function means multiplying it with a box filter, and this is equivalent to convolving the spectrum of the 
function with a sinc function. In the case of the box filter itself, truncating its filter kernel will convolute 
the box in the frequency domain with a sinc function. The result is a box filter with "wiggly" edges, see 
Figure 15. The truncated box filter suffers from ringing, also referred to as the Gibbs phenomenon.  

A better approach is to multiply the box filter's kernel with a function that cuts it off more smoothly, 
resulting in less distortion in the frequency domain. One such filter is derived by Blinn in [BLIN89b]. 

Other practical reconstruction filters can be found in [GONZ87] or in any other book/article about signal 
processing or filtering - look for low-pass filters.  

Resampling a Sampled Data Set 

After having discussed how to correctly sample a function and how to correctly (or incorrectly) 
reconstruct it, let us shift attention to the process of sampling an already sampled function for the second 
time. 

Figure 15: Truncating a box filter's kernel causes ringing in the filter.
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Why would we ever want to do that? For example, to create an image of a function. A computer's frame 
buffer is organized as a finite set of pixels, thus rendering an image of a function effectively means 
sampling it over the regular pixel grid. If the function to be rendered was already sampled (as is most 
often the case), we are in fact sampling the function a second time.  

Resampling a function is difficult, because it involves both steps discussed so far - sampling and 
reconstruction. If resampling a function, the two sampling grids used will hardly ever be identical. 
Because a sampled function is only represented by its values at the original sample positions, we have to 
reconstruct the values at the new sample positions first before we can sample it again, see Figure 16.  

So what are the pitfalls of resampling? The most important one is using a bad reconstruction filter to 
calculate the original function values at the new sample positions. This mistake has already been 
discussed in the section on reconstruction. 

Resampling and Oversampling 

The second thing to remember is Shannon's theorem. When resampling a function, we have to make 
sure that we do not sample below the Nyquist rate; otherwise, faithful reconstruction of the resampled 
function would become impossible. 

This problem has also been addressed earlier, but in the context of resampling it occurs in a different 
guise: When resampling, the original function is usually unknown - so how can we determine the 

Figure 16: Resampling a sampled function involves reconstructing the function and then 
sampling it on the new grid. Because we are only interested in the reconstructed values at the new 
sample positions, we only have to reconstruct the function at those positions.
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Nyquist rate?  

The answer is: We do not have to. Assuming that the original sampling was done carefully, we know 
that the original function did not contain any frequency components above pi/w, where w is again the 
distance between adjacent sample positions. This means that we are safely sampling above the Nyquist 
rate, as long as the new sampling distance w' is not lower than the original one.  

Wait a minute - don't we have to sample twice as often to satisfy Shannon's theorem? No! This is the 
same misunderstanding of sampling theory that lead to the common rule of thumb "sample twice as 
often to get rid of aliasing" that is often quoted when using linear interpolation as reconstruction filter.  

Shannon's theorem states that sampling at the same distance w is safe. The only problem occurs when 
one uses a bad reconstruction filter. In that case, sampling is still safe, but by bad reconstruction one is 
sampling a completely different function! The obvious artifacts when resampling at similar frequencies 
are not based on Shannon's theorem, but on bad reconstruction. The same reasoning as in the 
reconstruction section applies here as well: Two times oversampling improves the result, but does not 
solve the problem. Using a better reconstruction filter does.  

Downsampling 

So far, we have only been talking about sampling above the Nyquist rate. What can we do if we really 
want to sample below the Nyquist rate, for example to compress a sampled data set? In that case, we 
accept that we will not be able to reconstruct the function exactly, but we still want to reconstruct it as 
closely as possible. 

Just sampling at a lower frequency would introduce aliasing, which could distort the sampled function 
beyond recognition. Let us reconsider Shannon's theorem: It states that a function can be sampled at a 
frequency w, if the function does not contain frequency components greater than or equal to w/2. Thus, 
if the sampling frequency is predefined, we have to change the function to satisfy this constraint.  

This can be done by pre-filtering the function: Before the sampling process starts, the function is fed 
into a low-pass filter which will cut away all frequency components above w/2 - e, where e is some 
small positive value. This results in the function's Nyquist rate to drop to slightly less than w, and we can 
safely proceed to sample at the frequency w.  

The problem of finding a good applicable low-pass filter is the same as finding a good reconstruction 
filter - after all, reconstruction is nothing else but low-pass filtering.  

Conclusion 

The intent of this little document was to explain some of the basic ideas of sampling theory - too little to 
talk about it, but just enough to understand the impact sampling theory has on common applications like 
Volume Rendering. I also tried to correct some common misunderstandings about sampling theory, 
especially the "two-times-oversampling" rule of thumb, by showing that undersampling is not the major 
source of artifacts in sampled functions. Understanding the limitations of reconstruction is essential to 
getting it right some day. 

Another intention was to point out some sampling and reconstruction methods that actually work; alas, 
discussion of the really good filters is beyond the scope of this document. See [BLINN89b] for a 
readable derivation of a "nice" reconstruction filter, and [MARS94] for a comparison of some existing 
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filters (alas, Marschner and Lobb didn't include Blinn's filter in their evaluation).  

And thanks for reading this far!  
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