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ABSTRACT. $UE�TO� THEIR� LOW�COST�AND�SMALL�SIZE��MICROSENSORS�ARE�OF�GREAT� INTEREST� FOR�MANY
APPLICATIONS�� (OWEVER�� FEW� ARE� AS� ACCURATE� THAN� THEIR� CLASSICAL� FORERUNNERS� SO� THAT� THEIR
OUTPUT�SIGNALS�MUST�BE�CORRECTED��4HE�PRESENT�RESEARCH�WORK�FOCUSES�ON�AN�ERROR�CORRECTION
SYSTEM�DESIGNED�TO�ELIMINATE�PERTURBATIONS�THAT�ARE�RANDOM�IN�CHARACTER��0ROVIDED�THEY�CAN
BE�MODELLED��+ALMAN�FILTERS�ARE�WELL�SUITED��THEY�ARE�USED�TO�ESTIMATE�A�DESIRED�SIGNAL�FROM
NOISY�MEASUREMENTS��)N�A�SECOND�STEP��THE�BASIC�METHOD�IS�MODIFIED�TO�SUIT�ALSO�APPLICATIONS
WHERE�NO�MODEL�OF�THE�SIGNAL�IS�AVAILABLE��4HE�INTEREST�OF� THIS�SECOND�METHOD�IS�OUTLINED�IN
THE�PECULIAR�CASE�OF�THE�OFFSET�CORRECTION�FOR�AN�ANGULAR�RATE�MICROSENSOR��"OTH�APPROACHES
ARE�PRESENTED�AND�ILLUSTRATED�THROUGH�EXAMPLES�

RÉSUMÉ. ,�ENCOMBREMENT�R©DUIT�ET� LES�CO»TS�RELATIVEMENT�BAS�DES�MICROCAPTEURS� LES�RENDENT
INT©RESSANTS�DANS�DE�NOMBREUSES�APPLICATIONS��#EPENDANT��LA�PLUPART�SONT�ENCORE�BIEN�MOINS
PR©CIS�QUE�DES�CAPTEURS�CLASSIQUES�DE�SORTE�QUE�DES�M©THODES�DE�CORRECTION�D�ERREURS�DOIVENT
ªTRE�D©VELOPP©ES��#E�PAPIER�PROPOSE�UNE�M©THODE�DE�R©DUCTION�DES�BRUITS�STOCHASTIQUES�BAS©E
SUR�UN�FILTRE�DE�+ALMAN��5NE�FOIS�QU�UN�MOD¨LE�DE�L�ERREUR�EST�D©FINI��LE�FILTRE�PERMET�D�ESTIMER
LE� SIGNAL�D©SIR©� �PARTIR�DE�MESURES�BRUIT©ES��$ANS�UNE�VERSION�MODIFI©E�� L�ALGORITHME�PEUT
ªTRE�APPLIQU©�ALORS�QU�AUCUN�MOD¨LE�DU�SIGNAL�N�EST�DISPONIBLE��,�INT©RªT�DE�CETTE�DEUXI¨ME
M©THODE�EST�ILLUSTR©�DANS�LE�CAS�PARTICULIER�DE�LA�CORRECTION�D�OFFSET�POUR�UN�GYROSCOPE�MICRO
USIN©��,ES�DEUX�APPROCHES�SONT�ILLUSTR©ES�PAR�PLUSIEURS�EXEMPLES.
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1. Introduction

Recent progress in semiconductor design and assembly techniques has led to an
increasing symbiosis between mechanical and electronic devices. This evolution
allowed the advent of microsensors. Due to their low cost and small size, they are of
great interest in many applications. However, they are up to now far less accurate
than classical devices so that correction methods must be investigated. The present
research work focuses on an error correction system designed to eliminate
perturbations that are random in character. Provided they can be modelled, a Kalman
filter is well suited. It is yet rather used in sensor fusion applications than in
correction problems for a single sensor. In the following, its use to estimate a desired
signal from noisy measurements is presented and illustrated through simulations. The
basic method is modified to suit applications where no model of the signal is
available. The interest of this method is outlined in the peculiar case of the offset
correction for an angular rate microsensor.

2. Reduction of sensor errors

2.1 Correction methods

Current microsensors suffer from errors due to internal causes (e.g., parasite
vibration modes of the proof mass) as well as external causes (e.g., temperature).
Since their accuracy is rather low, the problem of dealing with their errors becomes a
crucial one whatever the level of accuracy required by the application. The
correction methods depend on the characteristics of the perturbations. If the
frequency range of the perturbations is different from the bandwidth of the signal,
suitable filtering in the frequency domain eliminates undesired signals. This stage is
usually necessary but does not suffice to suppress the sensor errors. In most cases,
the key idea is to determine a model for the sensor behaviour and thereafter to
estimate the error in the measurements with respect to the model.

For deterministic errors, corrections based on known mathematical relationships
with respect to the varying parameters (e.g., quadratic dependence of the output of a
pressure sensor in function of the temperature) are applied. Other undesired
phenomena are random, but they can nevertheless be modelled. The present research
work concerns those errors that can be corrected through the use of a Kalman filter.
It focuses on the random description of the sensor offset (sometimes referred to as
bias), which is the output of the sensor when no physical signal is measured. In the
following, the output am of a sensor is simply described as:

baka m +⋅=

where a is the true signal to be measured, k is the sensitivity, and b is the offset.

2.2 Modelling procedure

Models of the sensor offset are determined using some identification procedure
[JOH93]. The proposed models are a posteriori models since they are derived from
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empirical data, independently of underlying physical principles. They are also black-
box models since only the output of the sensor - and not the internal structure - is
considered. The first step of the identification procedure consists of designing an
experiment to collect observations. Secondly, data are carefully examined and a
model structure is selected accordingly. The parameters of the model are then
identified using a linear regression approach. Finally, the model is validated through
comparison with several batches of empirical data. The residual represents misfits
between data and model. On one hand, the presence of any information remaining in
the residuals is a clue that the model might be insufficiently complex or otherwise
inappropriate. On the other hand, a major objective is to obtain a model of least
possible complexity in order to reduce the computational load in subsequent
processing. Therefore, despite a lack of fit with the data, the model may be accepted,
provided the required accuracy is reached. In the current work, adaptive modelling
has not been considered. The models are established during an off-line processing.
Once they are validated, they are included in the system description and no more
modified, whatever the results of the subsequent processing.

3. Application of Kalman filtering to noise cancellation problems

3.1 Kalman filter equations

The Kalman filter estimates the state of a dynamic system having certain types of
random behaviour. The system must be described in a state space form:

kkkk

kkk1k

vxHz

wxx

+⋅=
+⋅Φ=+

x (n x 1) is called the state vector. It is composed of any set of variables
sufficient to completely describe the unforced motion of a dynamic system. z (l x 1)
is called the observation vector. It concerns data that can be known through
measurements. wk and vk are the state and measurement white noise with known
covariance matrices Qk and Rk, respectively. They are mutually not correlated. Φk is
the state transition matrix, Hk the observation matrix.

The Kalman filter is based on a recursive algorithm. At time tk, the optimum
combination of measured and estimated results is given by:

( )−− ⋅−⋅+= kkkkkk x̂HzKx̂x̂

where −
kx̂  denotes the a priori estimate. The ’hat’ denotes an estimate and the

superscript minus indicates that this is the best estimate prior to assimilating the
measurement at tk. The Kalman filter gain Kk can be written as:

( ) 1

k
T
kkk

T
kkk RHPHHPK

−− +⋅⋅⋅⋅=
where the error covariance matrix Pk associated with the optimal estimate is

obtained from:

( ) −⋅⋅−=
kkkk PHKIP
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To recursively compute the Kalman filter gain for the next step, the predictions
for the state estimate and covariance at the next step are given by:

kk1k
x̂x̂ ⋅Φ=−

+

k
T
kkk1k

QPP +Φ⋅⋅Φ=−
+

The derivation of the extended Kalman filter allows the estimation of a non-linear
system state. Details on these algorithms as well as on state space description of
random processes can be found in many textbooks (e. g., [GRE93]).

3.2 Design of the filter

Let us now consider how a Kalman filter is designed in order to separate two
random processes in the case where an input combination of both signal and noise is
available. To this purpose, the state vector is composed of all the variables describing
the models of the random processes. Additional state variables are appended to
account for either non-white state or measurement noise. Φk and Qk are
straightforwardly deduced from the models. The observation vector is simply the
measured signal that is a mix of signal and noise. Therefore, the observation matrix
is usually a combination of unit matrices and zeros matrices according to the state
vector. Once the system is properly designed, the algorithm of the discrete Kalman
filter is used to estimate the signal.

3.2.1 Example: Signal and noise purely random

Here, the signal is assumed an exponentially correlated process (correlation time
α = 0.01); a single state variable is used to model it:

k
2

k1k we1xex α−α−
+ −α+=

The measurement noise is assumed white of strength 0.01. Hence, no additional
state variable is needed. The state matrix is reduced to the scalar e-α, and the
observation matrix equals simply 1. Figure 1 next page shows that the filter is able to
separate the signal from the noise.

3.2.2 Example: Signals with deterministic structure

Let us now consider that the signal has a deterministic structure but that some
parameters (e.g., slope of a ramp, amplitude of a sine) are unknown. A Kalman filter
can be used to estimate them. In the following test, the signal is assumed a ramp.
Two state variables are needed: x1 is the signal and x2 is the slope. Since the signal is
assumed purely deterministic, no white noise is added in the state equations:

k2

1

1k2

1

x
x

10
11

x
x







⋅





=






+

The corrupting noise is assumed an exponentially correlated process, though any
random model (e.g., ARMA) would have been convenient, leading to the addition of
a state variable to the state vector. The state matrix is completed accordingly. White
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noise of strength 0.1 is then superposed and included in the measurement equations.
An arbitrary initial value x2 = 10 for the unknown slope is defined.
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Figure 1. Estimation of an exponentially correlated process: Measurement (top) -
Estimated signal compared with true signal (bottom).

Figure 2 shows the ability of the filter to separate the ramp from the noise and to
recover the true value of the slope (0.001) despite the wrong initial value.
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Figure 2. Estimation of the slope of a deterministic ramp signal: Sum of a ramp, an
exponentially correlated process and white noise (grey) - Estimated ramp (black).

In the second example, the measurement is a combination of two sine waves
whose amplitudes are corrupted by white noise. The amplitude of each sine is
described as a random constant:

kk1k wxx +=+

Figure 3 shows the ability of the filter to track the value of the sine amplitudes.
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Figure 3. Sum of two sine waves with noisy amplitudes and their estimations.

4. Pseudo-model

4.1 Principle

From the previous discussion, it results that the Kalman filter allows recovering a
signal from a noisy measurement, provided a model for both signal and noise is
defined. The processes can be purely or partially random, stationary or non-
stationary. The method has therefore an interest in a wide range of applications,
since many types of signals are concerned. However, in some applications involving
sensors, no assumptions on the physical signal to be measured may be available, e.g.,
in navigation problems, where accelerometers and angular rate sensors (gyros) are
used to compute the trajectory of a vehicle, though no suitable model of the motion
may be definable [BRO72]. Therefore, an alternative design, called pseudo-model,
has been studied. The principle is briefly explained below, for more detailed
equations refer to [MAR97]. The state is chosen as containing sensitivity and offset
variations as well as the physical signal:

( )TabkX =
The number of variables to describe k and b depends on the models found during

the identification stage. The main feature of the design is that only one state variable
is attributed to the signal, whatever its real shape. The state equation corresponding
to the signal is simply obtained from:

)b,k(f
k

ba
a m =−=

Since the function f is non-linear, the equations of the extended filter are used.
The observation of the system is still the measurement of the sensor and the non-
linear measurement equation is:

)a,b,k(hbaka m =+⋅=

4.2 Simulation results

The behaviour of the filter using the pseudo-model has been studied through
simulations. Sensor measurements are generated as the sum of a true signal and an
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offset. In the first case shown, the true signal is a step, in the second example, it is
the sum of 2 sine waves. The offset is assumed an ARMA noise defined by 2 poles
(p1 = -1, p2 = 0.5) and 1 zero (z1 = 0.1). It is described with two state variables:
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The sensor offset o is given by the first state variable o1, the white noise wk has a
variance of 22 e1 −=σ , the sensitivity is assumed constant and modelled accordingly
with one state variable. Obviously, different models for the offset or for the scale
factor would lead to different set of variables. The physical signal, in turn, is always
described with one state variable, whatever its nature. Figure 4 shows the ability of
the filter to recover the real signal, although no signal model has been provided.
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Figure 4. Estimation of a step shaped (left) and sine shaped signal (right) signal
using the pseudo-model approach. The offset is assumed an ARMA signal.

5. Correction of an angular rate microsensor

The first generation of an in-house designed silicon gyro [PAO96] shows a large
offset drift leading quickly to unacceptable result. The error can be described as a
low-frequency drift with a superposed noise of higher frequency. Since attempts to
find a single model failed, it has been decided to model both effects separately. The
unbounded trend is modelled with an integrated random walk, a process obtained by
integrating white noise twice:
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Once the DC trend of the offset is removed, the model for the residual noise is
estimated with an ARMA structure. The Kalman filter corresponding to the pseudo-
model design is now used to correct the output of this gyro during a test. The sensor
output is recorded during 35 minutes and, in the middle of the experiment, the
angular velocity is changed from 0°/s to 100°/s. After correction, the high-frequency
noise is attenuated whereas the DC drift is removed; the accuracy is drastically
enhanced.
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Figure 5. Correction of the gyro signal for a step change of angular velocity.

However, a low-pass effect appears when the signal shows a sudden change, due
to an adaptation effect of the filter. Tests have shown that the choice of the noise
measurement matrix has a straightforward influence on this low-pass effect and that
a trade-off has to be found between the attenuation obtained and the adaptation of the
filter.

6. Conclusion

A Kalman filter is well suited to eliminate time-dependent sensor errors, which
are either partially or totally random, provided adequate state space models could be
defined to describe the undesired phenomena. Thus, it has a straightforward interest
in microsensor correction. In our design, the state vector contains the models of both
the signal and the errors. However, the need for a model for the signal may be too
restrictive for some applications. Therefore, an alternative approach, referred to as
the pseudo-model, is proposed where the model of the signal to be estimated is
derived from the measurement equations. The algorithm was successfully applied for
the offset correction of a gyro. However, good working of the filter is tied to the
adequacy of the model. Hence, possible extensions of the work should also consider
investigations on adaptive models.
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