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THE COMPANY

Frequency Devices - founded in 1968 to provide electronic design

engineers with analog signal solutions and engineering services - today

designs and manufactures standard and custom signal conditioning, signal

processing and signal analysis solutions utilizing analog, digital and

integrated analog/digital technology. By addressing a wide array of signal

processing needs, Frequency Devices continues to provide state-of-the-art

solutions to the rapidly changing electronics industry. From prototype to

production, we design and manufacture products to agreed-upon

performance specifications, utilizing the latest technologies. These module,

subassembly and instrument hardware and software solutions include

analog and DSP (FIR and IIR) filters, instrumentation grade amplifiers, low

distortion signal sources and data conversion products.

Focusing our talents on precision performance while minimizing size allows

us to offer our customers some of the smallest, most precise, and

cost-effective signal-processing products available anywhere. By
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integrating our superior technology into instrumentation products, we also

provide compact precision bench-top, laboratory and system solutions using

Compactpci, VME, VXI, and ISA architectures and RS232, IEEE-488,

USB, Ethernet or Firewire interfaces that permit high speed communication,

with high channel density in a minimum of space.

At the heart of our solutions lie our analog and digital technologies.

Frequency Devices' ability to identify the design weaknesses of each design

approach and integrate their strengths to achieve a desired performance

objective through the use of layout techniques, packaging skills and

intellectual property results in analog, digital and mixed signal solutions that

provide superior performance. This superior performance of Frequency

Devices' solutions has earned the company a place:

On the international space station where its active filter modules are

used as anti-aliasing filters in Boeing's Active Rack Isolation System

(ARIS),

At the LIGO observatory (a joint development program affiliated

with California Institute of Technology, Massachusetts Institute of

Technology and the National Science Foundation), providing high

resolution, low noise real-time data processing digital-to-analog

conversion that integrated precision analog design with state-

of-the-art 24-bit digital conversion,

And on numerous OEM, R & D, and test system applications in the

health, space, defense, science, engineering, and technology segments

of the precision data acquisition markets.

These applications represent only a few examples of the myriad alternatives

that Frequency Devices offers to enhance the processing accuracy of

analog, digital and mixed-signal systems.

 

Analog

Electronic Filter Design Guide

DIGITIZING SIGNALS AND ALIASING

Analog to Digital Conversion (A/D)

Most physical (real world) signals are analog. Operating on these signals

efficiently often requires the filtering, sampling and digitizing of the analog

data using A/D converters. The converted digital data may then be

manipulated mathematically. Many data-acquisition systems must also

construct a representation of the original signal from the digital data stream.

Unfortunately, sampling often sacrifices accuracy for the sake of
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convenience. The digital version of a signal may not resemble the original in

some important respects. A graphic example is the movie scene that

apparently shows wagon wheels or helicopter blades turning backwards.

This erroneous image, known as an "alias", occurs because a "motion

picture" camera actually samples continuous action into a series of stills,

and the frame rate (commonly 24 or 30 frames per second) is not fast

enough or is nearly an exact multiple of the object's rotation speed.

According to Nyquist's Theorem, accurately representing an analog signal

with samples requires that the original signal's highest frequency component

be less than the Nyquist frequency, which is at least half the sampling

frequency. To correct the image in the movie example, the frame rate

would have to exceed twice the rotation speed of the wheel (or its spokes)

or of the helicopter blades. No practical data-acquisition system can sample

fast enough to catch all of a real signal's components. Frequencies above

Nyquist appear as false low-frequency aliases. As an example, Figure 1

shows the result of sampling a 900 Hz signal at 1 kHz.

Figure 1
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The process seems to indicate that the original signal was a 100 Hz sine

wave, the difference between the actual input wave and sampling

frequencies. Note that as the maximum signal frequency approaches the

Nyquist frequency, the total number of samples needed to reconstruct the

signal accurately approaches infinity.

Aliasing is a fundamental mathematical result of the sampling process. It

occurs independent of any physical sampling-system capabilities.

Downstream processing cannot reverse its effect. Only filtering out the alias

high frequency components before sampling begins can prevent it.

When a signal undergoes A/D conversion, the amplitude of any frequency

component above Nyquist should be no higher than the converter's least

significant bit (LSB). Some sources insist on reducing the amplitude to

below half of the LSB. For any full-scale undesirable signal component,

then, attenuation should be at least 6 dB x n, where "n" is the number of

bits in the A/D. For half of the LSB, attenuation would be 6 dB x (n + 1). A

12-bit A/D, then, demands attenuation of 72 dB or 78 dB.

In practice, noise-signal amplitudes rarely match the amplitudes of signal

components of interest, so this attenuation calculation represents worst

case.

IDEAL FILTER SHAPES (THEORETICAL)

Every electronic design project produces signals that require filtering,

processing, or amplification, from simple gain to the most complex DSP.

The following presentation attempts to "de-mystify" some of these signal-

processing requirements. The concepts of ideal filters, commonly used filter

transfer function characteristics and implementation techniques will assist

the reader in determining their electronic filter and signal conditioning

needs.

Real-world signals contain both wanted and unwanted information.

Therefore, some kind of filtering technique must separate the two before

processing and analysis can begin.

An ideal filter transmits frequencies in its pass-band, unattenuated and

without phase shift, while not allowing any signal components in the

stop-band to get through. All filters offer a pass-band, a stop-band and a

cutoff frequency or corner frequency (fc) that defines the frequency

boundary between the pass-band and the stop-band.

Figure 2 shows the four basic filter types: low-pass, high-pass, band-pass

and band-reject (notch) filters. The differences among these filter types

depend on the relationship between pass- and stop-bands.

FDI Online Design Guide http://www.freqdev.com/guide/fullguide.html

4 of 43 5/1/2009 10:19 PM



Figure 2

 

Low-pass filters are by far the most common filter type, earning wide

popularity in removing alias signals and for other aspects of data acquisition

and signal conversion. For a low-pass filter, the pass-band extends from DC

(0 Hz) to fc and the stop-band lies above fc .

In a high-pass filter, the pass-band lies above fc , while the stop-band

resides below that point.

Combining high-pass and low-pass technologies permits constructing

band-pass and band-reject filters. Band-pass filters transmit only those

signal components within a band around a center frequency fo .An ideal

band-pass filter would feature brick-wall transitions at fL and fH , rejecting

all signal frequencies outside that range. Band-pass filter applications

include situations that require extracting a specific tone, such as a test tone,

from adjacent tones or broadband noise.

Band-reject (sometimes called band-stop or notch ) filters transmit all

signals except those between fH and fL . These filters can remove a specific

tone - such as a 50 or 60 Hz line frequency pickup - from other signals.

Another common application is medical instrumentation, where
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high-impedance sensors pick up line frequencies.

NON-IDEAL FILTERS (REAL WORLD)

Real-world signals contain both wanted and unwanted information.

Therefore, some kind of filtering technique must separate the two before

processing and analysis can begin. Real filters are far from ideal. They

subject input signals to mathematical transfer functions with names like

Butterworth, Bessel, constant delay and elliptic that only approximate ideal

behavior. Instead of the sharply defined transition represented by ideal

filters, real filters contain a transition region between the pass-band and the

stop-band as shown in Figure 3.

Figure 3
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In addition, the pass-band is not flat like the ideal filter, may contain

attenuation ripple, and the attenuation in the stop-band may not be infinite.

In order to simplify the analysis of various real world filter types, filter

response curves are normalized. When selecting a filter, this normalized

data allows the designer to compare the theoretical amplitude, phase and

delay characteristics of each filter type.

Normalization

See Figure 4 below for the theoretical performance characteristics and

normalized response curve of an 8-pole, 6-zero constant delay filter. The

frequency axis on the response plot is scaled so that the corner or ripple

frequency is always one Hertz instead of the actual intended corner or

ripple frequency. This allows one normalized curve to represent any filter

that would have the same response shape. To convert a normalized

amplitude response curve to a curve representing a filter whose corner

frequency is not at one Hertz, multiplying any number on the frequency

axis by the intended corner or ripple frequency scales the frequency axis.

 

Figure 4 - Frequency Response
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Amplitude Response

Amplitude Response is defined as the ratio of the output amplitude to the

input amplitude versus frequency and is usually plotted on a log/log scale as

shown in Figure 5. Note how the steepness of the transition band slope

(roll-off) increases as the number of poles increase.

Figure 5 - 2, 4, 6, and 8 Pole Butterworth Lowpass
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Phase Response

All non-ideal filters introduce a time delay between the filter input and

output terminals. This delay can be represented as a phase shift if a sine

wave is passed through the filter. The extent of phase shift depends on the

filter's transfer function. For most filter shapes, the amount of phase shift

changes with the input signal frequency. The normal way of representing

this change in phase is through the concept of Group Delay, the derivative

of the phase shift through the filter with respect to frequency.

Group Delay (D) equation:   D =
d

df

Group Delay

Group Delay is the phase slope on a linear phase vs. frequency plot. Figure

6 compares the group delay of some typical phase response curves.

Figure 6 - 8 Pole Lowpass, Group Delay Response

Butterworth, Bessel, Constant Delay, Elliptic
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Thus a point on a normalized group delay curve that has a group delay of

one (1.0) second would yield 1 millisecond Actual Delay for a filter with a

1KHz corner frequency.

 

Actual Delay =

Normalized Group Delay

Actual Corner Frequency (fc) in Hz

 

Actual Delay =

1.0 sec

  =  0.001 sec/Hz

1000 Hz

Analog Filter Specifications

Low-Pass and High-Pass

In order to define the limits of the filter pass-band in real circuits, most filter

specifications define the corner frequency (fc), as the frequency where

attenuation reaches -3 dB or for elliptic filters, the ripple frequency (fr),

the point where the response curve last passes through the specified

pass-band ripple. Filter specifications may also include a shape factor (sf)

requirement, which describes how fast signals roll-off during transition. The

sf represents the ratio between the cutoff/ripple frequency and where the

filter achieves a desired attenuation level, say (-80 dB).

Figure 7 is an elliptic filter that attenuates to -80 dB at 1.56 fr, hence a

shape factor of 1.56 to -80 dB. A high-pass filter with a 1.56 shape factor

would achieve that same -80 dB of attenuation at fr/1.56 or 0.64 fr.

Filter Attenuation (Theoretical)

0.05 dB 1.00 fr

3.01 dB 1.05 fr

60.0 dB 1.45 fr

80.0 dB 1.56 fr

Also note that the elliptic transfer function attenuation floor is not infinite,

but has notches and humps.
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Figure 7

 

From the attenuation table above, this low-pass elliptic filter has a -3 dB

frequency of 1.05 at fr, therefore the shape factor is calculated as follows:

Band-Pass and Band Reject Filters

Specific items of interest for Band-Pass filters are the Center Frequency

(geometric mean) fo, the Filter Bandwidth, the Quality Factor (Q) and

the shape factor.

Frequency fo represents the geometric mean of fH and fL. That is:

fo = (fH * fL ) 
1/2

Bandwidth is defined as the difference between pass-band extremes:

Bandwidth = fH - fL

The Quality Factor (Q) of a band-pass filter represents the ratio of the

center frequency fo to the -3 dB bandwidth

Q = fo /(fH - fL )

Following is an example of band-pass filter calculations:
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Filter

Attenuation fH/fo fL/fo

-3dB 1.105 0.905

-80dB 2.414 0.414

fH(-3dB) - fL(-3dB) = 1.105 fo - 0.905 fo = 0.20 fo
fH(-80dB) - fL(-80dB) = 2.41 fo - 0.414 fo = 2.0 fo

Therefore: Q(-3dB) =

fo
  =  

fo
  =  5

fH(-3dB) - fL(-3dB) 0.2 fo

Figure 8 is a plot of a four pole-pair band-pass with a Butterworth transfer

function and a Q of 5. For band-pass filters, the shape factor shows the

ratio of the bandwidth at some attenuation level (say -80 dB) to the

specified pass-band bandwidth (the bandwidth at -3 dB). Its shape factor at

-80 dB is 10:1.
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Figure 8

 

A Band-Reject filter's shape factor is the reciprocal of this number - that is,

the ratio of the pass-band bandwidth to the corresponding bandwidth at the

noted attenuation level.

Filter Equations

Filter transfer functions relate filter output to input through polynomials in

the Laplace-transform complex variable "S" as shown in Equation 1. Using

the "S" domain may seem confusing, but allows both the amplitude and

time response of a filter to be expressed in a simple format. A two pole, two

zero, low-pass filter can be expressed as:

Equation 1

where: Ho = dc gain

Q = peaking factor at the corner frequency

o = 2 fo = filter corner frequency

n = filter notch frequency

Filters may include both Poles and Zeros. A Pole is any frequency that

makes the denominator of the mathematical transfer function go to zero. A

Zero is a frequency that makes the transfer-function numerator go to zero.

Second-order transfer functions may contain two poles and up to two zeros.

To achieve steeper roll-off, higher-order real filters usually include cascades

of second-order and first-order filter stages.

To produce the phase and frequency response, "S" in the above equation is

replaced by j . Consider the second-order function that produces the

amplitude versus frequency curve in Figure 9.
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Figure 9

 

Varying Ho, o, and Q (the gain at o) changes the curve's shape. As

frequency gets very large compared to wo, roll-off (the slope of the curve)

approaches -6N dB per octave or -20N dB per decade, where N is the order

of the filter (in this example N=2).

Complex poles consist of a negative real portion and an imaginary portion

that can be either positive or negative. An "S-plane" plot, with a real axis

and an imaginary axis, provides a convenient way to observe filter

differences. Figure 10 shows typical transfer functions for four-pole filters

as both S-plane and frequency-domain graphs.
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Figure 10

   

Linear-active filters can be made to closely match theoretical transfer

functions. Cascading first and second-order filter sections easily produces

three, four, five, six, seven, and eight-pole roll-off characteristics.

Performance is as good as the operational amplifiers that they contain. With

appropriate component selection, these filters contribute little broad-

band-noise and can achieve distortion levels lower than -100 dB.

Semiconductor switches permit corner-frequency programming without

significant noise, distortion, or other undesirable effects. These filters are

generally smaller than passive types for frequencies less than 100 kHz.

Filter-section corner frequencies - and therefore the accuracy and shape of

phase and amplitude curves - depend on amplifier characteristics, passive-

component accuracy and stability.

ANALOG CIRCUIT DESIGN

Though there are several ways of constructing active filters, most

applications use one of three topologies:

The Sallen-Key topology injects signal into the non-inverting input of the

opamp, which is usually set for unity gain operation. This allows very

accurate unity gain in the filter passband. Distortion can be a problem for

the Sallen-Key design, as most opamps do not allow a large common mode
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signal swing without adding distortion to the signal. Only one opamp is

needed to build a two-pole filter section.

The multiple feedback topology also uses one opamp for a two pole

section, injecting signal into the inverting input of the opamp, usually with

the non-inverting input grounded. This limits common mode input voltage

swing and provides better distortion for larger signal swings. Gain set

depends on resistor ratios, so pass-band gain is dependent on the accuracy

of the resistors chosen. You can build high-pass filters in the multiple

feedback form though the input impedance decreases to a very low value at

higher frequencies. It is not possible to build multiple feedback filters with

zeros. Multiple feedback topologies are not as versatile as other topologies.

For precision performance the state variable topology is the hardest to

design but provides the most versatility. State variable designs require a

minimum of three opamps and often are realized using four opamps to

increase the versatility even further. Unlike the Sallen-Key and multiple

feedback topologies, the state variable filter Q, fo and pass-band gain can

all be independently set. This independence allows for higher precision

filters because of the reduced component tolerance buildup. The state

variable filter is the basis for most programmable filters.

An active filter's amplifiers contribute DC offset, although careful filter

design can limit it to millivolt, and in many cases microvolt, levels. This

error is usually stable with time and changes little with temperature. The

amplifiers also add harmonic distortion to filter output. However, since

active filters can achieve distortion levels less than -100 dB at frequencies

up to 100 kHz and -110 dB at up to 20 kHz, they can easily pre-filter 16-bit

(-96 dB) and 18-bit (-108 dB) A/D converters.

FILTER SELECTION

Transfer functions can be classified into one of two basic categories,

Amplitude filters and Phase filters. Amplitude filters are designed for the

best amplitude response for a given situation, for example zero ripple in the

amplitude response pass-band. Phase filters are designed for desired phase

response, such as linear phase with frequency throughout the filter

amplitude pass-band.

Amplitude Filters

For many applications the design goal is to approximate ideal "brick wall"

frequency response. Probably the most common amplitude filter transfer

function is the Butterworth, which consists of an array of poles uniformly

distributed on a left-half-plane unit circle, as in Figure 10A. This

arrangement yields the maximally flat amplitude response in the pass-band

(the first 2n - 1 derivatives of the frequency response are equal to zero,

where n is the number of poles). Therefore, amplitude response rolls-off

monotonically (uniform slope) as frequency increases in the stop-band.

The attenuation ratio "A( )", of a Butterworth low-pass transfer function is
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given by:

where N = degree of the filter (number of poles).

Butterworth filters produce no pass-band ripple and provide theoretically

infinite attenuation as frequency increases when compared to fc . The

primary limitation is, Butterworth filters produce slower roll-off than some

of the alternative transfer functions.

The attenuation ratio of a Chebychev transfer function (Figure 6C) is

given by:

which generates a series of polynomials, where  is pass-band ripple and

CN  represents the n
th
 order polynomial in the series. Table 1 shows the

first five Chebychev polynomials.

Chebychev Polynomials CN

N  CN     

1  

2  2
2
 - 1

3  4 3 - 3

4  8
4
 - 8

2
 + 1

5  16
5
 - 20

3
 + 5

Table 1

The Chebychev function provides faster roll-off in the transition band than

a Butterworth filter would, but at the expense of some variation in the

pass-band called ripple. Ripple denotes that the amplitude in the pass-band

varies between 1 and (1 + 2), where  is always less than 1. Pole

frequencies are more spread out and the Q's of the sections are higher than

the comparable section Q's of a Butterworth. Determining pole locations

involves applying hyperbolic trigonometric functions to each pole of a

Butterworth filter of the same order. Like the Butterworth, Chebychev

stop-band roll-off is monotonic. It is important to note that many designers

avoid Chebychev transfer functions in favor of Cauer elliptic alternatives

because section Q's are higher for Chebychevs than with elliptic functions

which provide faster roll-off in the transition-band.

Cauer elliptic transfer-function attenuation is given by:
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where S = j , ZN is the n
th
 order elliptic polynomial, and  determines

pass-band ripple attenuation at the cutoff frequency,  = 1. Although an

elliptic filter achieves faster roll-off than either Butterworth or Chebychev

varieties, it introduces ripple in both the pass- and stop-bands. Also, elliptic

filter roll-off is not monotonic, eventually reaching an attenuation limit,

called the stop-band floor.

For elliptic filters, shape factor depends not on the -3 dB corner frequency

(fc), but on ripple frequency (fr), the highest pass-band frequency on a

low-pass filter or the lowest pass-band frequency on a high-pass filter

where pass-band ripple occurs, as shown in Figure 11.

Figure 11
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At the stop-band edge, a small frequency change produces a large change in

attenuation. Another critical element in the shape of an elliptic filter is

frequency fs, which denotes the first frequency at which the attenuation

reaches the stop-band floor.

The pole configuration for this transfer function consists of a set of poles

around an ellipse with pairs of zeros on the j  axis, see Figure 10D. Pole

frequencies are spread out over the pass-band. Section Q's are less than

those in a comparable-order-and-ripple Chebychev. Desired pass-band

ripple, stop-band floor and shape factor determines actual pole and zero

locations in a particular filter. Figure 12 compares the amplitude response

of eight-pole Butterworth, 0.1 dB ripple Chebychev, and 0.1 dB ripple, -84

dB stop-band floor Cauer-elliptic transfer functions. The curves are

normalized to the -3 dB cutoff frequencies.

Figure 12

FDI Online Design Guide http://www.freqdev.com/guide/fullguide.html

19 of 43 5/1/2009 10:19 PM



 

Generally, filters that produce faster roll-off in the transition-band exhibit

poorer phase response and group delay characteristics (See Figure 6).

Phase Filters

For some filter applications it is desirable to preserve a transient waveform

while removing higher frequency noise components from the signal. If each

of the frequency components of the input waveform (from the Fourier

series or the Fourier transform) is phase shifted an amount linearly

proportional to frequency, then they remain in the correct time relationship

and sum together to create, at the output, the original waveform that was

present at the input of the filter, with the higher frequencies components

having been removed by the filter. When a filter has phase delay that varies

linearly with frequency it is called a Linear Phase filter. A linear phase

filter has a constant group delay, at least through the pass-band. Amplitude

filters provide relatively constant group delay only from 0 Hz to about the

mid pass-band frequency range peak near fc.

As with amplitude filters, mathematicians have provided polynomial

approximations of an ideal linear phase transfer function. The most

common linear phase filter is based on Bessel (sometimes called Thompson)

functions. Bessel filters provide very linear phase response and little delay

distortion (constant group delay) in the pass-band. They show no overshoot

in response to step input and roll-off monotonically in the stop-band. They

also exhibit much slower attenuation in the transition-band than amplitude

filters. Figure 13 presents amplitude and delay response curves for an

8-pole Bessel. Other types of phase filters include, constant-delay (a

modified Bessel), equiripple phase, equiripple delay, and Gaussian transfer

functions. They either have more pass-band amplitude roll-off for only a

small improvement in phase linearity or only slightly less roll-off in the

pass-band at the expense of degrading the phase linearity.
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Figure 13

 

Compensated Filters

Some applications require filters offering the sharp roll-off characteristics of

amplitude-type filters and the linearity of phase-type transfer functions.

Two techniques, amplitude equalization and delay equalization, are

available to achieve these ends. Both add complexity to filter design, and

have theoretical and practical limits.

Amplitude equalization modifies the amplitude response of phase filters to

produce a filter that is sometimes called a constant delay filter. Stop-band

zeros on the j  axis introduce attenuation notches in the stop-band, but

contribute no phase or delay to the pass-band response. Figure 14 shows

mirror-image right-half, left-half plane pass-band-zero pairs that modify

amplitude response without additional phase or delay.

Figure 14
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Improving the transition-band roll-off rate, however, does not come free.

Adding zeros also introduces a small amount of step-input overshoot, and

roll-off is no longer monotonic; that is, compensation introduces a

stop-band floor. The j -axis zeros produce a "soft" or rounded roll-off near

the cutoff frequency. These zeros become the dominant contributors to

attenuation-curve shape, preventing further corner-frequency shape

improvement.

This technique can achieve a factor-of-two improvement in Bessel roll-off

to a -80 dB floor, comparable to Butterworth-filter performance. For

comparison, Figure 15 shows the amplitude response of an 8-pole Bessel,

an 8-pole, 6-zero constant delay, and a 8-pole Butterworth response.

Figure 15
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Delay equalization employs additional all-pass (no attenuation) filter

sections in cascade with standard filter sections to modify the phase

linearity of amplitude filters. All-pass filters have left-half-plane poles and

mirror image right-half-plane zeros. The pole and zero locations determine

phase shift, though the added phase shift does not change the filters

amplitude response. Adding phase shift at appropriate places in the

pass-band allows, "straightening out" the phase curve of an amplitude filter.

Each pole-zero pair of an all-pass filter increases phase shift from

approximately 90º at fc to as much as 180º at 10 times fc. Therefore, adding

equalizer sections increases total phase shift for the filter/equalizer network.

From a practical point-of-view, this technique allows filter and system

designers an order-of-magnitude phase-linearity improvement over

conventional amplitude transfer functions. Figure 16 illustrates the group

delay of a 6-pole, 4-zero elliptic filter with and without a two-pole delay

equalizer. The equalized plot is flatter over a larger portion of the pass-band

at the expense of an increase in the amount of delay. The equalization

process in this case increases total phase shift by as much as 360° at the

cutoff frequency and by 720° at higher frequencies.

Figure 16
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The number and location of poles and zeros in a delay equalizer depend on

the pole configuration of the accompanying filter and the desired linearity

improvement. Therefore, there are no "standard" solutions. Frequency

Devices creates delay-equalization filters based on each situation and on

each customer's specific requirements.

OUTPUT SIGNAL ERRORS

Besides inaccuracies of theoretical approximation, the most significant side

effects of signal filtering are the following:

Settling time is not strictly an output signal error because it is

mathematically related to the filter transfer function, but is usually deemed

to be an undesirable filter side effect. All filters serve to delay the input

signal by a certain minimum amount as well as increasing rise and fall time

of any fast changing input signal. A general rule for settling time is that the

more the filter approaches a "brick-wall" approximation, the longer it will

take to settle. Therefore, an eight-pole filter will take longer to settle than a

four-pole filter.

Step Response for amplitude type filters may exhibit substantial overshoot

(ringing) when presented with a sudden change in voltage amplitude at the

filter input. See Figure 17 for typical 8 pole transfer function step response

curves.
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Figure 17

   

DC-offset adds a voltage directly to an input signal to obtain the output

value. Sophisticated systems may permit calibrating or compensating for

this effect. When evaluating filters and A/D converters, designers must also

consider DC-offset stability with time and temperature to ensure that

compensation circuitry and procedures remain valid regardless of

environmental conditions. For programmable filters, DC offset may vary

with corner-frequency settings.

Noise (noise created by both passive and semiconductor devices) is present

at the output of any filter. In most cases, later filter stages remove

stop-band noise from earlier stages, but they leave noise in the pass-band

unaffected. High-Q filter stages amplify noise near their corner frequencies.

In an active filter, for example, the noise spectrum in the stop-band is

usually flat and low level, resulting largely from the output amplifier. At the

low-frequency end of the pass-band, the noise spectrum is also flat, but

with a magnitude two to four times the level of the stop-band noise. Near

the corner frequency, noise levels peak at magnitudes that depend on the

filter's transfer function. Elliptic filters, which feature high-Q last stages,

produce noise peaks near the corner frequency of three to five times the
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level of low-frequency pass-band noise.

The importance of noise will depend on the system bandwidth and the level

of signals passing through the filter. In digitizing systems, aliasing folds a

frequency spectrum around each harmonic of the sampling frequency, and

because these effects are additive, achieving the best data accuracy

requires reducing broad-band-noise as much as possible.

Distortion, harmonics of the input signal's frequency components result

from non-linearity in the filter circuit. These harmonics become inputs to

the A/D converter, which digitizes them with the rest of the signal. As with

broad-band-noise, each low-pass filter stage removes stop-band distortion

components that the previous stage generates. Distortion levels vary with

input-signal frequency, amplitude, transfer function, and corner frequency.

Total Harmonic Distortion (THD) is a specification often used as a single

number representation of the distortion present in the output of an active

circuit. It is the RMS sum of the individual harmonic distortions (i.e. 2
nd
,

3
rd
, --- etc.) that are created by the non-linearities of the active and passive

components in the circuit when it is driven by a pure sinusoidal input at a

given amplitude and frequency.

Harmonic distortion measurement requires a very low distortion sinusoidal

input to the circuit, the removal of the fundamental frequency component

from the output and the measurement of the amplitude of the remaining

harmonics, which are typically 60 to 140 dB below that of the fundamental.

Spectrum analyzers and FFT instruments can measure individual harmonic

components and can be used to calculate the THD. For active filters, the

THD is usually specified in dBc (dB relative to the amplitude of the

fundamental frequency component) and at a specific frequency and

amplitude (ex. 10Vp-p @ 1.0kHz).

An RMS voltmeter can be used to measure the THD if, the fundamental

frequency component can be removed by a notch filter to a level that is at

least an order of magnitude below the largest harmonic component.

However, that measurement will also include any noise that is within the

bandwidth of the meter and is commonly referred to as the THD + NOISE

or THD + N.

At lower frequencies, amplifiers have sufficient loop gain to reduce

distortion to acceptable levels. For input frequencies near fc, the filter
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removes second and higher order harmonics. Above the corner frequency,

filter attenuation reduces the primary signal, which also reduces the

distortion. However, if` the signal frequencies are well below the corner

frequency and the signal has distortion, then that distortion will also reside

in the filter's pass-band. Distortion components will affect the accuracy of

the analog-to-digital signal conversion.

SELECTING THE RIGHT ANALOG FILTER

Choosing the correct filter shape for a particular application requires

defining properties of the incoming signal that the filter must remove, as

well as the properties that it must retain. In most situations, there is some

overlap between these two areas, demanding a degree of compromise.

Time Domain Waveform Preservation

Filters for such applications feature linear phase response in the pass-band,

and must not introduce ringing or overshoot. To preserve the signal

waveform while removing undesired components, the filter must also pass

many harmonics of the incoming signal's base frequency. "Noise"

components that the filter removes must be at substantially higher

frequencies than these necessary harmonics. Phase-derived filters, such as

Bessel or constant-delay (equiripple-phase) and their amplitude-

compensated derivatives, work best in these cases.

High Selectivity in the Frequency Domain

Situations where removal of undesired components is the overriding

concern and some distortion in the time domain of the signal's shape is of

less importance generally require sharper roll-off filters with Butterworth or

elliptic transfer functions. Spectrum analysis, for example, involves only the

amplitude of each frequency component of the input signal. Most voice and

data transmission also requires integrity only of amplitudes, as do many

forms of modal analysis, which determines resonant frequencies of

structures and objects.

Compromise Filters

Although linear-phase filters preserve critical information, many

applications also require rapid transition-band roll-off. A balance between

these mutually exclusive requirements can often be achieved by phase-

derived types and amplitude-compensated versions of phase filters.

Applications for this approach include determining the direction of an

object or signal source by analyzing the waveform from one or more

receivers.
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Available Technology

Electronic Filter Design Guide

SELECTING A FILTER TECHNOLOGY

In addition to specifying transfer functions, designers who need signal

filtering must choose among passive, linear-active, switched-capacitor, and

digital-signal-processing (DSP) filter technologies.

Passive Filters

Passive filters contain resistors, inductors and capacitors that provide

polynomial approximations of ideal filters. They often come packaged in

metal cans to reduce inductor magnetic pickup. Corner frequencies

generally range from hundreds of Hertz to many mega-Hertz. Passive filters

require no power (and therefore no power supply) and generate no DC

offset.

Low-frequency passive filters are large and heavy, and manufacturing them

is expensive. Input signals also undergo "insertion loss" (attenuation) in the

pass-band. The non-linearity of the magnetic materials in the inductors

makes building low-distortion filters of this type difficult. An engineer who

wants to design a custom filter may have trouble obtaining precision

inductive components and tuning the filter to a specific corner frequency

requires considerable expertise. Passive filter circuits are not easily

programmable.

Linear Active Filters

Linear active filters contain resistors, capacitors, and linear operational

amplifiers. Corner frequencies range from 0.001 Hz to 30 MHz. Unlike

passive filters, linear-active filters require external power. Since target

systems also require power, this does not generally present many

impediments to designs, however, corner frequencies above 100 kHz call

for wide-band amplifiers that demand significant currents.

Some semiconductor manufacturers have created monolithic-silicon linear-

active filter designs. This approach diffuses or layers internal capacitors and

resistors onto the same silicon substrate as the semiconductor amplifiers.

Attainable capacitor values and stability of the diffused capacitors and

resistors limit this technique's applicability to higher frequencies, especially

for high-order filter functions.

Switched Capacitor Filters

In switched-capacitor filters, a switched capacitor simulates a resistor at an

amplifier input, thereby creating an integrator as shown in Figure 18.
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Figure 18

The circuit momentarily connects to "A", charging capacitor "Cs" to the

input voltage that is present at that moment. It then switches to "B",

dumping the charge onto the amplifier's negative input. The amplifier then

transfers the charge to the integrating capacitor "Ci", where it remains until

the next cycle either adds or subtracts charge. The higher the switch

frequency, the more often "Ci" receives charge, which changes the

integrator's time constant and therefore the resulting filter's corner

frequency. Varying clock frequency permits programming filters

"on-the-fly".

Cascading sections permits constructing multi-pole filters. In some universal

designs, a filter-section's corner frequency is not an exact sub-multiple of

the clock. Cascaded multi-pole versions of such designs require care to

ensure that pole frequencies are correct. By switching the capacitor at 50 to

100 times the corner frequency, these filters can attain a good

approximation of theoretical performance.

Since a switched-capacitor filter is a sampling device, it experiences aliasing

errors, frequency components near the sampling frequency that must be

eliminated to ensure accuracy. Also, this technology produces clock

feed-through. Clock feed-through is an extraneous signal that switched-

technology filters create. Although feed-through resides at 50 to 100 times

the filter's corner frequency, its amplitude can exceed the resolution or

noise floor requirements of the application and can cause additional aliasing

problems. Manufacturers often do not include this factor in their noise

specifications, yet users must make accommodations for clock feed-through

in their system design. Fortunately, its high frequency makes removal fairly

easy with simple second or third-order linear-active filters.

Switched-capacitor designs are available as complete filters or as universal

building blocks requiring external resistors to function. Driving clocks may

be internal or external to the filter itself. These filters can be small (DIPs

and SOICs) and inexpensive because they are manufactured as silicon

chips.
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Digital (FIR and IIR)

Electronic Filter Design Guide

Digital-Signal-Processing Filters (DSP)

Due to the unique design considerations and requirements associated with

digital filters, along with the ever-changing data conversation (A/D, DSP,

FPGA...) technology, a seperate section of Frequency Devices Filter Design

Guide has been designated for Digital Filters.

Based on combining ever increasing computer processing speed with higher

sample rate processors, Digital Signal Processors (DSP's) continue to

receive a great deal of attention in technical literature and new product

design. The following section on digital filter design reflects the importance

of understanding and utilizing this technology to provide precision stand

alone digital or integrated analog/digital product solutions.

By utilizing DSP's capable of sequencing and reproducing hundreds to

thousands of discrete elements, design models can simulate large hardware

structures at relatively low cost. DSP techniques can perform functions

such as Fast-Fourier Transforms (FFT), delay equalization, programmable

gain, modulation, encoding/decoding, and filtering.

Programs can be written where:

Filter weighting functions (coefficients) can be calculated on the fly,

reducing memory requirements or

Algorithms can be dynamically modified as a function of signal input.

DSP represents a subset of signal-processing activities that utilize A/D

converters to turn analog signals into streams of digital data. A stand-alone

digital filter requires an A/D converter (with associated anti-alias filter), a

DSP chip and a PROM or software driver. An extensive sequence of

multiplication's and additions can then be performed on the digital data. In

some applications, the designer may also want to place a D/A converter,

accompanied by a reconstruction filter, on the output of the DSP to create

an analog equivalent signal. Figure 19 shows a typical digital filter

configuration.
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Figure 19 - Typical DSP Filter Configuration

 

Digital filters process digitized or sampled signals. A digital filter computes

a quantized time-domain representation of the convolution of the sampled

input time function and a representation of the weighting function of the

filter. They are realized by an extended sequence of multiplications and

additions carried out at a uniformly spaced sample interval. Simply said, the

digitized input signal is mathematically influenced by the DSP program.

These signals are passed through structures that shift the clocked data into

summers (adders), delay blocks and multipliers. These structures change the

mathematical values in a predetermined way; the resulting data represents

the filtered or transformed signal.

It is important to note that distortion and noise can be introduced into

digital filters simply by the conversion of analog signals into digital data,

also by the digital filtering process itself and lastly by conversion of

processed data back into analog. When fixed-point processing is used,

additional noise and distortion may be added during the filtering process

because the filter consists of large numbers of multiplications and additions,

which produce errors, creating truncation noise. Increasing the bit

resolution beyond 16-bits will reduce this filter noise. For most applications,

as long as the A/D and D/A converters have high enough bit resolution,

distortions introduced by the conversions are less of a problem
1
.

1. Theoretically, note that the ratio of the RMS value of a full-scale sine

wave, to the RMS value of the quantization noise (expressed in dB) is

SNR=6.02N + 1.76dB, where N is the number of bits in the ideal A/D

converter.
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Although DSP's rarely serve exclusively as anti-alias filters (in fact, they

require anti-alias filters), they can offer features that have no practical

counterpart in the analog world. Some examples are 1) a linear phase filter

that provides steep roll-off (near brick wall) characteristics or 2) a

programmable digital filter that allows the signal conditioning to be changed

on the fly via software, (frequency response or filter shape can be altered

by loading stored or calculated coefficients into a DSP program).

Instead of using a commercial DSP with software algorithms, a digital

hardware filter can also be constructed from logic elements such as registers

and gates, or an integrated hardware block such as an FPGA (Field

Programmable Gate Array). Digital hardware filters are desirable for high

bandwidth applications; the trade-offs are limited design flexibility and

higher cost.

Two Types of DSP’s, Two Types of Math

(1) Fixed-Point DSP and FIR (Finite Impulse Response)

Implementations

Fixed-Point DSP processors account for a majority of the DSP applications

because of their smaller size and lower cost. The Fixed-Point math requires

programmers to pay significant attention to the number of coefficients

utilized in each algorithm when multiplying and accumulating digital data to

prevent distortion caused by register overflow and a decrease of the signal-

to-noise ratio caused by truncation noise. The structure of these algorithms

uses a repetitive delay-and-add format that can be represented as "DIRECT

FORM-I STRUCTURE", Figure 20.

 

Figure 20 - Direct Form-I Structure
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FIR (Finite Impulse Response) filters are implemented using a finite number

"n" delay taps on a delay line and "n" computation coefficients to compute

the algorithm (filter) function. The above structure is non-recursive, a

repetitive delay-and-add format, and is most often used to produce FIR

filters. This structure depends upon each sample of new and present value

data.

FIR filters can create transfer functions that have no equivalent in linear

circuit technology. They can offer shape factor accuracy and stability

equivalent to very high-order linear active filters that cannot be achieved in

the analog domain. Unlike IIR (Infinite Impulse Response) filters (See Item

2 below), FIR filters are formed with only the equivalent of zeros in the

linear domain. This means that the taps depress or push down the amplitude

of the transfer function. The amount of depression for each tap depends

upon the value of the multiplier coefficient. Hence, the total number of taps

determines the "steepness'" of the slope. This can be inferred from the

structure shown in Figure 20 above.

The number of taps (delays) and values of the computation coefficients (h0,

h1,..hn..) are selected to "weight" the data being shifted down the delay line

to create the desired amplitude response of the filter. In this configuration

there are no feedback paths to cause instability. The calculation coefficients

are not constrained to particular values and can be used to implement filter

functions that do not have a linear system equivalent. Note: more taps

increase the steepness of the filter roll-off while increasing calculation time

(delay) and for high order filters, limiting bandwidth.

The filter delay is easily calculated for the above structure. Delay = (0.5 x

Taps)/Sampling rate. For example, a 300-tap filter with a sampling rate of

48 kHz yields a minimum 3.125 milli-second delay [(0.5 x 300)/48 = 3.125

milli-seconds].

Designers must also be aware of the tradeoffs between phase delay and

filter precision when designing FIR filters. The bad news is that high order

FIR filters have longer delay; the good news is that the phase response

remains linear as a function of frequency. In applications where linear

phase is critical and long phase delay cannot be tolerated, a linear active

Bessel or a constant delay filter may be a better selection.

Two very different design techniques are commonly used to develop digital

FIR filters:
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The Window Technique and

The Equiripple Technique.

A. Window's: The simplest technique is known as

"Windowed" filters. This technique is based on designing a

filter using well-known frequency domain transition functions

called "windows". The use of windows often involves a choice

of the lesser of two evils. Some windows, such as the

Rectangular, yield fast roll-off in the frequency domain, but

have limited attenuation in the stop-band along with poor group

delay characteristics. Other windows like the Blackman, have

better stop-band attenuation and group delay, but have a wide

transition-band (the band-width between the corner frequency

and the frequency attenuation floor). Windowed filters are

easy to use, are scalable (give the same results no matter what

the corner frequency is) and can be computed on-the-fly by the

DSP. This latter point means that a tunable filter can be

designed with the only limitation on corner frequency

resolution being the number of bits in the tuning word.

B. Equiripple: An Equiripple or Remez Exchange (Parks-

McClellan) design technique provides an alternative to

windowing by allowing the designer to achieve the desired

frequency response with the fewest number of coefficients.

This is achieved by an iterative process of comparing a selected

coefficient set to the actual frequency response specified until

the solution is obtained that requires the fewest number of

coefficients. Though the efficiency of this technique is

obviously very desirable, there are some concerns.

For equiripple algorithms some values may converge to a

false result or not converge at all. Therefore, all

coefficient sets must be pre-tested off-line for every

corner frequency value.

Application specific solutions (programs) that require

signal tracking or dynamically changing performance

parameters are typically better suited for windowing

since convergence is not a concern with windowing.

Equiripple designs are based on optimization theory and

require an enormous amount of computation effort. With

the availability of today's desktop computers, the

computational intensity requirement is not a problem, but

combined with the possibility of convergence failure;

equiripple filters typically cannot be designed on-the-fly

within the DSP.

Many people will use windowing such as a "Kaiser" window to produce

good scalable FIR filters fairly quickly without the worry of
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non-convergence. However, if one is interested in producing the highest

performance digital filter for a given hardware configuration, the iterative

Remez Exchange algorithm is worth the test.

Figure 21 illustrates a major advantage that a digital low-pass equiripple

FIR filter can offer designers when solving signal-conditioning problems.

FC1 and FS1 are the corner and stop-band frequencies respectively. The

typical number of filter taps used for this -100 dB attenuation example is

around 300. The ratio of FS1 to FC1 is 1.1, an unheard-of shape factor in the

analog world. A slope calculation yields the fact that an analog filter would

have to be a 30th order filter to achieve this performance! Analog filters

beyond 10 poles are very difficult to realize and tend to be noisy.

Figure 21 - Low-Pass FIR Filter Template
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(2) The Floating-Point DSP and IIR (Infinite Impulse Response)

Implementations

Like its name, Floating Point DSP's can perform floating-point math, which

greatly decreases truncation noise problems and allows more complicated

filter structures such as the inclusion of both poles and zeros. This permits

the approximation of many waveforms or transfer functions that can be

expressed as an infinite recursive series. These implementations are

referred to as Infinite Impulse Response (IIR) filters. The functions are

infinite recursive because they use previously calculated values in future

calculations akin to feedback in hardware systems.

The equivalent of classical linear-system transfer functions can be

implemented by using IIR implementation techniques. A common

procedure is to start with the classic analog filter transfer function, such as a

Butterworth, and apply the required transform to convert the filter

equations from the complex S-domain to the complex Z-domain. The

resulting coefficients yield a Z-domain transfer function in a feedback

configuration with a number "n" of delay nodes that is equal to the order of

the S-domain transfer function. These implementations are referred to as

IIR filters because when a short impulse is put through the filter, the output

value does not converge quickly to zero, but theoretically continues

decreasing over an infinite number of samples. Floating Point DSPs can

produce near equivalent analog filter transforms such as Butterworth,

Chebycheff and elliptic because they use essentially the same mathematical

structure as their analog counterparts. For the same reason, they exhibit the

same or worse non-linear phase characteristics as their analog counterparts

since the equivalent of poles and zeros in linear systems are reproduced

with an IIR, digital filter.

Figure 22 illustrates a bi-quad digital filter structure that computes the

response of a second order IIR transfer function. It has two delay nodes and

the computation coefficients are A1k, A2k, B1k and B2k.

Figure 22 - Bi-quad Digital Filter that Computes Second Order IIR Transfer Function
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Floating Point processors do have some advantages over Fixed Point

processors.

Specific DSP applications such as IIR filters are easier to implement

with floating point processors.

Floating Point application code can have lower development costs

and shorter time to market with respect to corresponding programs in

a Fixed-Point format.

Floating Point representation of data has a smaller amount of

probable error and noise.

After all is said, these powerful Floating-Point devices can emulate

Fixed-Point processors but at higher hardware cost.

Summary

Complex digital filter functions involve millions of mathematical operations.

The speed of these operations depends on a variety of factors; DSP chip

speed, filter complexity (number of taps), and the number of bits of

accuracy in each computation. Today, many DSP turnkey and application

specific platforms are available along with development systems for the

savvy engineer, who wishes to do his or her own design. Many computer

programs also exist that can determine the number of taps and the values of

computation coefficients that are required to implement a specific digital

filter performance function. In some cases these programs output files

directly to a PROM burner or Flash Memory, automatically loading

programs (algorithms) into the actual DSP circuit. One such Software

Program is MatLab
TM

 by (The MathWorks
TM

) which calculates

coefficients for designated FIR filters and can also produce IIR filter

programs.

Because of the many hardware and software design options and trade-offs

available in providing signal processing solutions, having the availability of

analog and DSP design and programming expertise along with application

specific Intellectual Property (IP) from one source can provide a strong

argument to the busy design engineer to seek a turnkey or custom solution

from a manufacturer like Frequency Devices.

Examples include:

Multi-Rate FIR filters, which can significantly extend low frequency

bandwidth limits and shorten filter delay; both are design limitations

of single rate sampled DSP filter algorithms.

Ultra low noise and distortion anti-alias and reconstruction filters to

120 dB.

Low distortion signal generators to 20-bits.

AD and DA signal converters with -100 dB or better noise floors.

As DSP sample rates continue to increase, the bandwidth and performance
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of DSP solutions will also increase.

 

Signal Reconstruction

Electronic Filter Design Guide

Digital to Analog Conversion (D/A)

As with input signals to A/D converters, waveforms created by D/A

converters also exhibit errors. For each input digital data point, the D/A

holds the corresponding value until the next sample period. Therefore, the

output waveform exists as a sequence of steps. This output, a kind of

"sample-and-hold" - is known as a "first-order hold".

Any step-function approximation of a smooth analog wave such as D/A

output consists of a set of primary-frequency sinusoidals and their

harmonics. To accurately recover the analog signal requires removing these

harmonics, usually with a filter following the D/A. Such a filter features a

very flat amplitude response in the pass-band and a rapid roll-off above fc.

The stop-band floor must be deep enough to attenuate high-frequency

component errors to below an LSB of the target system's A/D or D/A

converter.

Roll-off need not be as sharp as an anti-alias prefilter, which must push the

target system's useful bandwidth as close as possible to the Nyquist

frequency. Even if the original signal bandwidth is 100% of Nyquist (an

unrealizable goal without serious alias errors), the lowest undesirable

frequency in the D/A output is the second harmonic. For reasons of

convenience, many designers specify the same filter for both anti-alias and

reconstruction. From an attenuation standpoint, however, this approach

represents overkill. In addition, because the step-function D/A output

includes fast rise and fall times, a softer roll-off, more linear phase filter

(Bessel) would work better at this end of the process because it produces

less ringing and overshoot than an elliptic or similar sharp-roll-off transfer

function does.

According to Fourier-transform mathematics, a waveform reconstructed

using a first-order hold exhibits an amplitude error (E) that varies as a

function of frequency f and the sampling frequency fs, and whose

magnitude is given by Figure 23.

E =
(Sin X)

X
, where X =

 f

fs
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Figure 23

 

Choosing a Filter Solution

Electronic Filter Design Guide

Choosing a filter technology is less straightforward than selecting a transfer

function from among Butterworth, Bessel, and Cauer-elliptic. The best

solution depends heavily on the application. To reduce alias errors to

acceptable levels, designers base their filter implementation selections on

the desired bandwidth and accuracy of the target system. These parameters,

along with hardware costs, determine the system's speed (sampling rate),

resolution (number of bits), type of A/D converter (sigma-delta, successive-

approximation, flash, etc.), and anti-alias/reconstruction filter technology.

Linear-Active Filters serve applications that require system bandwidths as

close as possible to the sampling frequency, with a sharp cutoff. Simple two

or three-pole versions also serve as anti-alias filters and clock feed-through
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or reconstruction filters for systems employing switched-capacitor or DSP

solutions. With active filter technology, very accurate, low frequency filters

in the 2.0 MHz to sub hertz range can be built that are almost impossible to

achieve with other technologies.

Switched-Capacitor designs work best where cost and space are at a

premium. Other criteria to consider include: when required system accuracy

is around 10 to 13 bits, the bandwidth is more than 10 kHz, and where the

DC accuracy and stability specifications of switch capacitor filters are

acceptable.

Applications in the multi-megahertz range or requiring power line

conditioning (filtering) typically utilize Passive Filters. This includes

snubbers for high-energy inductive or transient suppression. Also, passive

filters must be used when power is not available, though the user must be

willing to tolerate insertion loss (signal attenuation).

Digital Filters are used primarily when transfer-function requirements

have no counterpart in the analog world, or when a DSP already resides on

the circuit board to perform other functions.

An example of a digital filter selection limitation is shown in Figure 24.

The pass-band for a high-pass digital filter is limited to the maximum

bandwidth, sampling rate, and word length that the filter order allows. After

that, there is no pass-band! For this example, broadband high frequency

active or passive filters are an obvious alternative.
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Figure 24

Digital filter selection is the choice or trade-off between Floating Point DSP - IIR filters and

Fixed Point DSP - FIR filters which are illustrated in the Digital Filter Decision Tree, Figure

25.
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Figure 25

 

Whether you decide on a fixed point FIR or floating point IIR solution, the

world is still analog. In many applications the conversion from analog to

digital and back to analog is a requirement, often with limitations in

bandwidth and design flexibility. One example is range limitation which is

the maximum bandwidth imposed by the sampling when altering the digital

filter frequency. A solution is to adjust the clock, which forces adjustments

in the anti-alias and reconstruction filter, therefore requiring multiple fixed

frequency or programmable filters (typically not cost effective). Another

approach is to adjust the clock within the DSP by decimation or

interpolation; hence the filter shape can be modified within the filter

algorithm. This is called Multi-Rate filtering and several decimations can be

implemented in series to reach very low frequencies. This Intellectual

Property has been well refined by Frequency Devices engineers.

SHOULD YOU BUILD IT YOURSELF?

Electronic designers often try to ensure a product's signal integrity by

constructing their own signal processing circuitry. Unfortunately, the time

and money associated with engineering design and assembly efforts can

make the actual cost of such a solution very high. The design may require a

complex arrangement of sensitive components that consume precious board

real estate and compromise system reliability. In addition, some of these

components can generate their own alias signals.

Design engineers generally understand their own applications very well.

Typically, however, they are not signal-conditioning or signal-processing

experts. Limited experience with integrated analog and DSP technology

often make creating an effective and accurate filter solution difficult and

time-consuming.

On the other hand, system manufacturers are generally very sensitive to the

cost of purchased solutions. The experts at Frequency Devices have seen

many instances where companies have regarded self-contained signal

conditioning modules and subassemblies as too expensive. Therefore,

engineers design or buy simple, inexpensive alternatives for their products,

hoping that lower cost and typically lower performing products will be good

enough. Such approaches may work, but in many cases the reduced signal

integrity degrades system performance to the point of unacceptability.

Unfortunately, once in-house designs do not meet desired performance

specifications, altering the design to incorporate the proper alternative

solution or accepting the degraded signals, usually under extreme time

pressures, generally costs far more than relying on better solutions in the

first place would have. Reinventing the wheel rarely produces the most

effective results.
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Based on many years of experience with special-purpose signal-

conditioning devices and systems, Frequency Devices offers some of the

most advanced signal-processing products in the industry. We will work

with you to develop specifications that are appropriate to your unique

needs, avoiding either under-specifying or over-specifying in the interest of

controlling cost while maximizing performance.

Whether prototyping to prove a design, looking for laboratory test

equipment or working with high-volume applications for electronic original

equipment manufacturers and process control, you can rely on Frequency

Devices' data-acquisition, processing, and manipulation solutions for the

test and measurement, aerospace, undersea, navigation, automatic test

equipment, R & D, telecommunications, acoustic, and vibration markets.

Frequency Devices offers a combination of turnkey, standard and custom

module and subassembly solutions utilizing both analog and digital signal

processing; providing engineers with choices and solutions consistent with

their system or project requirements.

Frequency Devices, Inc.

Your engineering partner for signal

conditioning

  1784 Chessie Lane

Ottawa, IL 61350

Fax: (815) 434-8176

e-mail: sales@freqdev.com

 

Phone: (815) 434-7800

or (800) 252-7074 (U.S.

only)
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