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ABSTRACT

A method is described for measuring the concentrations of
both glucose and glutamine in binary mixtures from near infrared
(NIR) absorption spectra, Spectra are collected over the range from
5000-4000/cm (2.0-2.5 pm) with a 1-mm optical path length. Glucose
absorbance features at 4710, 4400, and 4300/cm and glutamine fea-
tures at 4700, 4580, and 4390/cm provide the analytical information re-
quired for the measurement. Multivariate calibration models are gen-
erated by using partial least squares (PLS) regression alone and PLS
regression combined with a preprocessing digital Fourier filtering
step. The ideal number of PLS factors and spectral range are identi-
fied separately for each analyte. In addition, the optimum Fourier
filter parameters are established for both compounds. The best over-
all analytical performance is obtained by combining Fourier filtering
and PLS regression. Glucose measurements are established over the
concentration range from 1.66-59.91 mM, with a standard error of
prediction (SEP) of 0.32 mM and a mean percent error of 1.84%. Glu-
tamine can be measured ovet the concentration range from 1.10-30.65
mM with a SEP of 0.75 mM and a mean percent error of 6.67%. These
results demonstrate the analytical utility of NIR spectroscopy for
monitoring glucose and glutamine levels in mammalian and insect
cell cultures. '

* Author to whom all correspondence and reprint requests should be addressed.
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Index Entries: Glucose; glutamine; near infrared (NIR); Partial
Least Squares (PLS) regression; digital Fourier filter; fed-batch
bioreactor.

INTRODUCTION

A wide range of useful products are produced from microorganisms
and animal cell cultures, The simplest large scale method used to produce
these products is a bioreactor operating in the batch mode. Cell growth
and/or product synthesis in the batch mode, however, is commonly
limited by either nutrient exhaustion or inhibitory byproduct accumula-
tion. Modified batch bioreactors, i.e., a fed-batch bioreactor, can be used
to eliminate nutrient exhaustion by feeding the required nutrients at a
rate equal to their consumption rate. Fed-batch bioreactors have been
demonstrated to increase cell and product yields of a variety of
organisms, including bacteria (1), yeast (2), insect cells (3), and mam-
malian cells (4). For bacteria and yeast it is usually sufficient to feed only
glucose. Feeding glucose and glutamine is critical for cell growth and pro-
duct production in insect {(5) and mammalian cell cultures (6), in which
typical glucose and glutamine concentrations are 20 and 6 mM, respect-
ively, Glucose and glutamine consumption by mammalian cells, which are
utilized to produce energy, is concomitant with the production of poten-
tially inhibitory lactate and ammonium ion byproducts, respectively.
Glacken et al. (6) demonstrated that controlled feeding of glucose and
glutamine can significantly reduce lactate and ammonium ion synthesis
in mammalian cell cultures. Perfusion bioreactors, with fresh medium
continuously flowing through a system in which cells are retained, are
alternative systems for continuously removing toxic byproducts and sup-
plying nutrients to insect (7) and mammalian cell cultures (8). The prac-
tical application of perfusion bioreactors, however, is limited because of
excessive medium consumption.

Previous use of batch, fed-batch, and perfusion systems has clearly
demonstrated that a well controlled fed-batch system is the most practical
for eliminating nutrient exhaustion and reducing inhibitory byproduct
accumulation to increase cell product yields. Control of a fed-batch bio-
reactor is dependent on reliable measurements that can be used to main-
tain constant nutrient concentrations within the bioreactor, Enzyme-based
biosensors are commonly used to quantify glutamine (9), glucose (1), and
other components. Biosensors, however, suffer from limited enzyme
stability and from their invasive nature, i.e., they require sample with-
drawal from the bioreactor and transport to the analyzer.

An alternative method of measuring medium component concentra-
tions is near-infrared (NIR) spectroscopy (10), which is noninvasive, has
long term stability, and is capable of measuring many components from a
single spectrum (11,12). Enzyme-based biosensors (13) have superior
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detection limits compared to those of NIR spectroscopy. The detection
limits of NIR spectroscopy, however, are well within the range necessary
for practical applications in monitoring important components in
microbial and animal cell bioreactors. NIR spectroscopy previously has
been shown to be capable of accurately measuring glutamine in pure
samples (14 ). In addition, binary mixtures of glucose and ammonium ion
have been used to demonstrate the simultaneous measurement of these
compounds with NIR spectroscopy (14).

In the present study the authors demonstrate the ability of NIR spec-
troscopy to simultaneously measure glucose and glutamine in binary
mixtures composed in aqueous solutions. This is an important and
necessary step toward establishing the feasibility of NIR spectroscopy in
monitoring nutrients in insect and mammalian cell bioreactors. The spec-
tra were processed by the multiple linear regression method based on the
partial least squares (PLS) algorithm (15-17). In addition, digital Fourier
filtering (18) was combined with PLS to improve the measurement of
each component,

EXPERIMENTAL

Apparatus and Reagents

All the spectra were collected with a Nicolet 740 Fourier Transform
infrared (FTIR) spectrometer (Nicolet Analytical Instruments, Madison,

WI). The spectrometer was designed to operate in the NIR range by using
a 250 W tungsten-halogen source, CaF, beam splitter and cryogenically
cooled InSb detector. To isolate the spectral range 5000-4000/cm a multi-
layer optical interference filter (Barr Assoc., Westford, MA) was used.
The temperature of the cell was controlled with a VWR 1140 refrigerated
temperature bath (VWR Scientific, Chicago, IL}. A T-mm path length rec-
tangular cell made from Infrasil quartz (Wilmad Glass Co., Buena, NJ)
was used. The filled cell was positioned in a sample holder equipped with
a glass-jacketed cell to control the solution temperature. The solution
temperature was measured by positioning a copper-constantan thermo-
couple probe directly into the sample and reading the temperature from
an Omega Model 670 digital meter.

All the reagents were purchased from Sigma Chemical Co. (St. Louis,
MO). Buffer was prepared by dissolving 1.050 g of NaHCO; and 3.039 g
of Nal,PO, into 3 L of pure water obtained from a Millipore Milli-Q UF
Plus water purification system and adjusting the pH to 6.35.

Procedures

Standards

Twenty-two different standard solutions of glucose ranging from
3.32-119.82 mM and 23 different standard solutions of glutamine ranging
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from 2.20-61.30 mM were prepared by dissolving appropriate amounts of
dried materials in buffer. Seventy different binary mixtures were randomly
prepared by mixing equal volumes of glucose and glutamine standards.
Therefore, the concentration of each component was half that in the
original standard.

Near Infrared (NIR) Spectra

NIR spectra were obtained for each sample by placing it in the ther-
mostatted sample holder and allowing approx 2 min for the sample to
thermally equilibrate at 27°C. All single beam spectra were obtained from
double-sided interferograms collected from 256 co-added scans with a
spectral resolution of 1.9/cm. Single beam spectra were produced by
triangularly apodized and Fourier transformed interferograms with
routines provided in the Nicolet SX-FTIR Ver. 4.4 software package. In
most cases, three single beam spectra were collected for each sample
solution. In a few cases, only two spectra were collected. In all cases,
replicate spectra were collected sequentially without removing the sam-
ple from the instrument. Background single beam spectra were collected
from a plain buffer solution. Generally, a new background spectrum was
collected after every fourth sample and the resulting spectrum served as
the reference spectrum for subsequent sample spectra. Absorbance spec-
tra were obtained by computing the negative logarithm of ratioed spectra.
Ratioed spectra were computed by dividing each single beam sample
spectrum by the appropriate single beam reference spectrum. In all, 209
absorbance spectra were obtained from the 70 unique binary mixtures of
glucose and glutamine.

Spectral Processing

All the single beam spectra were subsequently transferred to an Iris
Indigo computer (Silicon Graphics, Inc., Mountain View, CA) for process-
ing. All computer software used for the spectral processing was obtained
from Gary W. Small from the Center for Intelligent Chemical Instrumen-
tation in the Department of Chemistry at Ohio University, Athens, OH.
All algorithms were implemented in Fortran 77. PLS regression and
Fourier filtering routines involved subroutines obtained from the IMSL
software package (IMSL Inc., Houston, TX).

RESULTS AND DISCUSSION

Absorption Spectra

The spectral regions available for NIR analysis of aqueous solutions
are limited by the absorption of water. Water possesses a number of
strong absorption bands within the NIR region of the spectrum. One
spectral window falls between the 5200 and 3800/cm absorption bands of
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Fig. 1. NIR spectra (4850-4250/cm) of 10 mM glutamine and 10 mM glucose,

water. From a practical standpoint, this window extends from 5000-
4000/cm (2.0-2.5 pm) and molecular absorptions within this window corre-
spond to the first harmonic of combination bands associated with funda-
mental vibrational transitions.

Successful quantification of both glucose and glutamine from NIR
absorbance spectra requires differences in the absorption properties of
these molecules within the spectral window of interest. Absorption spec-
tra for the 5000-4000/cm spectral window are presented in Fig. 1 for
glucose and glutamine. Both spectra correspond to 10 mM solutions of
the respective compound. Differences in absorption properties are most
noticeable in terms of the position of the absorption bands. As pointed
out before (18,19), glucose possesses three characteristic absorption
bands centered at 4710, 4400, and 4300/cm. The spectrum for glutamine
reveals three absorption bands centered at 4700, 4580, and 4390/cm. For
ghicose, the 4710 band has the greatest absorptivity and the 4400 and
4300 bands possess similar absorptivities. For glutamine, the 4580 and
4390 bands have similar absorptivities, which are larger than that of the
4700 band.

The spectra in Fig. 1 clearly illustrates differences in the NIR spectra
of glucose and glutamine. Although the 4400 band of glucose overlaps
with the 4390 band of glutamine and the 4710 band of glucose is close to
the 4700 band of glutamine, the 4300 and 4580 bands differ considerably
and these differences should provide the information required to quan-
tify both species in solution. Nevertheless, the overlapping nature of
these spectra motivates the use of multivariate regression procedures to
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Fig. 2. Correlation plot for glucose and glutamine concentrations in stan-
dard solations for calibration (open circles) and prediction (solid circles).

separate the two components. PLS regression has been used to generate
calibration models for both analytes. In addition, the utility of a Fourtier
filtering preprocessing step has been evaluated as a means for improving
the quality of the calibration model by removing noise and baseline varia-
tions from the raw spectra.

PLS Calibration Models

PLS is a powerful method for extracting concentration information
from minute spectral variations (15-17). In fact, the PLS algorithm is
designed to correlate spectral variations with concentration variations.
When developing a calibration model based on a set of binary mixtures, it
is critical that the concentration distribution is random within the set of
calibration standards to the extent that there is no correlation between the
concentrations of the two analytes. If such a correlation exists, then the
PLS algorithm will incorporate this codependency within the calibration
model, which will result in systematic errors for subsequent samples that
do not possess this interrelationship.

The combinations of glucose and glutamine concentrations in the set of
standards used in this study were obtained by mixing solutions randomly.
The resulting glucose concentrations ranged from 1.66-59.91 mM and the
glutamine concentrations ranged from 1.10-30.65 mM. Colinearity between
the glucose and glutamine concentrations was evaluated by analyzing a
correlation plot produced by plotting the concentration of glutamine ver-
sus that for glucose in each standard solution. Figure 2 shows the correla-
tion plot for the data set used in this study. Inspection reveals no correla-
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tion between the two concentrations, A linear regression analysis of thege
data results in an R-square value of only 0.00167. The same type of plot was
brepared with subsefs of thege data to show the relationship between con.
centrations in solutions used for calibration and prediction. Again, no cop-
relation is indicated by inspection and the respective R-square values are
0.00018 and 0.08850.

PLS calibration models were generated by analyzing a fraction of the
whole data set, which was composed of 209 spectra from 70 binary mix-
tures. The calibration datg set was composed of 168 spectra from 56 of the
mixtures, The remaining 41 spectra, corresponding to the remaining 14
mixtures, were used to test the validity of the resulting calibration mode]
by serving as a prediction data set,

The number of PLg factors and the spectral range represent the two
critical parameters that must be established for the PLS algorithm, The
optimum number of factors can be identified as the number of factors that
gives a minimum standard error of prediction (SEP), The SEp directly indj-
cates the ability of the calibration model to predict concentrations accyr.
ately from spectra in the prediction data set (19).

In addition, the spectral range can dramatically affect the quality of a
calibration mode] (19). Previous work to measure glucose in biological
fluids by NIR Speciroscopy indicates that the best spectral ranges to investi-

respectively. In both €ases, no absorption bands are located outside thig
range (i.e., from 5000 to 4850 and from 4250—4000/cm). In addition, the

levels. Previous work illustrates that removing this noise by cutting out
noisy spectral regions improves the quality of the calibration model (19).
For glutamine, the following additional spectral regions were tested:;
4700-4320, 4650-4320, 4700-4450, and 4450-4320/cm. The first two corres-

4390/cm absorption band, respectively, For glucose, the following addi-
tional ranges were tested: 4850-4350, 4470-425(, 4850-4470, 4470-4350,
and 4350-4250/cm. The first two of these regions isolate two of the three
absorption bands. The first isolates the 4710 and 4400 bands and the sec-
ond isolates the 440 and 4300 bands. The last three regions focus on
single bands (4710, 4400, and 4300, respectively).

The optimum number of PLS factors was identified for each spectral
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Table 1
Results from Calibration Models for Glucose
and Clutamine Based on PLS Regression

Spectral range/cm Number of factors SEC, mM SEP, mM
Glucose
4850-425( 7 0.67 0.42
4470-4250 6 0.64 0.41
4850-4350 7 0.73 0.48
4470-4350 9 0.68 0.64
43504250 5 0.91 0.55
4850-4470 6 0.85 (.48
Glutamine
4700-4320 8 0.67 0.80
4700-4450 6 0.78 1.01
4450-4320 7 0.74 1.06
4650-4320 8 0.61 0.96
4800-4250 8 0.70 0.86
T
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Fig. 3. The effect of number of PLS factors on SEC and SEP for glucose
measurement in the spectral range 4470-4250/cm.

with the 4470-4250/cm spectral range. As expected, both the SEC and
SEP decrease sharply at the beginning as more of the analyte-dependent
spectral variation is incorporated into the calibration model. After the first
six factors, or so, there is little improvement in either the SEC or SEP. As
the number of factors is increased further, the SEC continues to decrease,
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albeit only slightly; where as, the SEP actually begins to increase slightly.
The point were the SEP begins to increase indicates that the data have
been overmodeled by incorporating spectral variation into the calibration
model that is not present in the prediction data and, therefore, does not
correspond to the analyte of interest.

The values in Table 1 indicate that the best calibration models for
glucose are obtained with spectral ranges of 4850-4250 and 4470-4250/cm.
This first range incorporates all three glucose absorption bands, whereas
the second range includes only the 4400 and 4300 bands. In each case,
models generated from only one absorption band performed significantly
worse compared to models built with multiple absorption bands. The
highest SEP is associated with the model constructed with only the 4400
band. This band was identified as the best feature for the NIR quantifica-
tion of glucose in biological fluids such as plasma (20) and protein con-
taining solutions (19). In this present study, however, the 4400 band does
not provide sufficient information because of the overlapping 4390 band
associated with glutamine.

The best combination of lowest SEP and fewest number of PLS fac-
tors is obtained with the 4470-4250/cm spectral range, which corresponds
to a combination of the 4400 and 4300 glucose absorption bands. A con-
centration correlation plot is presented in Fig. 4 for this calibration model.
In this figure, the glucose concentration obtained from the calibration
model is plotted versus the known glucose concentration of the standard
solution, Two plots are provided which correspond to the calibration and
prediction data sets. The ideal response is indicated by the unity line.
These data fall very close to the ideal line. A linear regression analysis of
these data reveals slopes of 0,999 + 0.003 and 1.005 + 0.004 and
y-intercepts of 0.03 + 0.62 and —0.13 + 0.33 mM for the calibration and
prediction data, respectively. Glucose concentrations in the prediction
data set were accurately predicted with a 0.41 mM SEP and a 2.21% mean
percent error.

The best calibration model for glutamine is also obtained with a wide
spectral range. The lowest SEP corresponds to a combination of eight PLS
factors and the 4700-4320/cm spectral range. The resulting concentration
correlation plots are provided in Fig. 5. Again, the data fall close to the
ideal line. Regression analysis indicates slopes of 0.995 + 0.005 and 0.994
+ 0.016 as well as y-intercepts of 0.06 + 0.65 and 0.21 + 0.30 mM for the
calibration and prediction data, respectively. The SEP and mean percent
error are 0.80 mM and 8.17% for this best model. As with the glucose
analysis, the smaller spectral regions corresponding to individual absorp-
tion bands result in inferior models,

The prediction ability of the glucose models is better than those for
glutamine, Glucose can be predicted with superior accuracy and fewer
numbers of PLS factors. Nevertheless, both glucose and glutamine can be
measured with sufficient accuracy for bioreactor monitoring.

Applied Biochemistry and Biotechnology Vol. 50, 1995




118 Chung et al.

T T T T T T T

| Calibration
50 | -

30+ —

10 - 8

Calculated Glucose Conc. {(mM)

0 10 20 30 40 B0 80

Aclual Glueose Conec. (mM)

T [ T T T T
Prediction
50 |- -

40 - .

30 | B

20 .

10 + =

Predicted Glucose Conc. (M)

o} .

0 10 20 30 40 50 60

Actual Glucose Conc. {mM)

Fig. 4. Glucose concentration correlation plots for calibration (top) and
prediction (bottom}) using a spectral range 4470--4250/cm and six PLS factors.

PLS Combined with Digital Filtering

Qur previous work with clinical glucose measurements (18-20) indi-
cates that digital filtering before PLS regression can significantly improve
the prediction accuracy by selectively eliminating spectral noise and
baseline variations. This previous success motivated us to explore the
utility of digitally filtering the spectra before the PLS regression.

The digital filter used in this work is a Fourier filter that selectively
passes spectral features according to the spectral band shapes. Briefly,
the Fourier filtering process involves performing a Fourter transform of
the raw absorbance spectrum. This Fourier transformation step treats the
absorbance spectrum as a signal vs time plot. The original raw spectrum
can be thought of as the superposition of a series of sine waves. Noise
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Fig. 5. Glutamine concentration correlation plots for calibration (top) and
prediction (bottom) using a spectral range 4700-4320/cm and eight PLS factors.

corresponds to high frequency sine waves, baseline variations corres-
pond to low frequency sine waves, and the molecular absorption bands
correspond to sine waves with intermediate frequencies. The Fourier
transformation process separates the combination of sine waves accord-
ing to their frequencies (termed digital frequencies). The filtering process
involves multiplying the transformed spectrum by a Gaussian function,
thereby weighting the information under the Gaussian. The Gaussian
response function is defined by the mean position of the Gaussian along
the digital frequency axis and the standard deviation of the Gaussian that
defines the width of the filter. The mean position must be set so the filter
weights the molecular absorption features within the spectrum. The stan-
dard deviation width must be set to maximize the analyte-dependent
information that passes through the filter. If the Gaussian function is too
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wide, noise will pass through the filter but if it is too narrow, analyte-
dependent information will be lost. After the multiplication step, the
altered spectrum is subjected to an inverse transformation to return the
data to the original data domain of an absorbance spectrum.

The key to successful digital filtering is identifying the ideal mean
position and standard deviation width for the Gaussian response func-
tion. A method described before has been used in this work (19,20).
Basically, this method involves constructing and testing PLS regression
models for all combinations of mean positions and standard deviation
widths for the Gaussian response function. The spectra are filtered and
the resulting altered spectra are used to generate a PLS calibration model
with a given number of factors and spectral range. An independent data
set of spectra is used to evaluate the prediction ability of the resulting
model. A response function is computed as the reciprocal of the sum of
the mean square calibration error and the mean square prediction error
(1/[MSE +MSPE]). A response surface is then generated by plotting the
mesh corresponding to the response function vs the mean position and
standard deviation widths of the Gaussian shaped filter. The morphology
of the surface is examined and the optimum Gaussian function param-
eters are identified as the maximum feature on the surface. This max-
imum position corresponds to the lowest sum of mean square errors of
calibration and prediction.

Sample response surfaces for glucose and glutamine are presented in
Fig. 6. These surfaces were generated by using 4 PLS factors with the
spectral range from 4850-4250/cm for glucose and 5 PLS factors with the
spectral range from 4700-4320/cm for glutamine. Response functions
were computed for all combinations of means ranging from 0-0.1 (0.001
step size) and standard deviations ranging from 0-0.02 (0.001 step),
which corresponds to the construction and evaluation of 2000 individual
calibration models, Both surfaces show an optimal location (peak) along a
ridge of high values. The optimum mean-standard deviation pairs are
0.030-0.005 f for glucose and 0.018-0.004 f for glutamine. Similar surfaces
were obtained for the other spectral ranges. Optimal filter parameters
found for glucose and glutamine are summarized in Table 2 for different
spectral ranges.

The optimum filters for glucose and glutamine are quite similar which
indicates that these filters are not able to discriminate between these two
compounds based on differences in their absorption spectra. In fact, each
filter passes a significant amount of information related to the other com-
pound. Fig. 7 illustrates results obtained after passing raw spectra
through filters optimized for glucose (Fig. 7A) and glutamine (Fig. 7B)
when the “'principal’”’ analyte concentration is held constant while the
“interfering’’ analyte concentration changes. The spectra in Fig. 7A cor-
respond to filtered spectra after passing through the optimal Fourier filter
for glucose when the glucose level is maintained at 3.55 mM and the
glutamine concentrations are 8.22, 15,65, and 17.71 mM. Variations in
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Table 2
Calibration Models for Glucose and Glutamine Based on Fourier
Filtering Combined with PLS Regression

Spectral Standard Number of

rangefcm Mean deviation factors SEC, mM SEP, mM
Glucose

4850-4250 0.030 0.005 6 0.63 0.32

4470-4250 0.023 0.003 6 0.65 0.38

4850-4350 0.026 0.004 6 0.63 0.33

4700-4250 0.022 0.003 6 0.70 0.35
Glutamine

4700-4320 (0.018 0.004 7 0.77 0.75

4700-4450 0.018 0.004 9 0.80 0.84

4450-4320 0.019 .002 8 0.87 0.90

4650-4320 0.019 0.004 5 0.87 0.86

4800-4250 0.024 0.005 7 0.87 0.88
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Fig. 7. Spectra after Fourier filtering using the optimum filter for glucose
(A) and optimum filter for glutamine (B). Spectra a, b, and ¢ correspond to a
glucose concentration of 3.55 mM and glutamine concentrations of 822,
15.65, 17.71 mM, respectively. Spectra d, e, and f correspond to a glutamine con-
centration of 25,11 mM and glucose concentrations of 11.52, 31.61, 48.15 mM,

respectively.

signals at 4390 and 4580/cm correspond to glutamine concentration varia-
tions. Glucose information is likewise passed through the glutamine
filter. Fig. 7B presents spectra after filtering with the glutamine optimized
Fourier filter for solutions with a constant glutamine level (25.11 mM) and
varying glucose concentrations (11.52, 31.61, and 48.15 mM). The varia-
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tion in peak height at 4400 and 4300/cm correspond to the changes in
glucose concentration. Clearly, glucose information passes through the
glutamine filter and glutamine information passes through the glucose
filter. Consequently, multivariate analysis is needed to quantify both
compounds even after Fourier filtering.

Calibration models based on the combination of Fourier filtering and
PLS regression are slightly better for both glucose and glutamine com-
pared to models based solely on PLS alone. Results from Fourier filter/
PLS calibration models are summarized in Table 2 for glucose and
glutamine. The performance of the model is relatively insensitive to spec-
tral range. SEP values are generally smaller and fewer number of PLS fac-
tors are required compared to models based on PLS alone.

Calibration Models for Glucose and Glutamine

The best performance for glucose was obtained with the 4850-4250/cm
spectral range, six PLS factors, and a Fourier filter defined by a mean of
0.030 f and a standard deviation of 0.005 f. The corresponding SEC, SEP
and mean percent error are .63 mM, 0.32 mM, and 1.84%, respectively.
For glutamine, the best performance used the spectral range from 4700-
4320/cm, 7 PLS factors, and Fourier filter parameters of 0.018 and 0.004 f.
The corresponding SEC, SEP, and mean percent error are 0.77 mM, 0.75
mM, and 6.67%, respectively. Fig. 8 presents concentration correlation
plots for these two best calibration models. In both cases, the calibration
and prediction data sets fall close to the ideal line with no indication of de-
viation, Regression analysis of the glucose correlation plot indicates slopes
of 0.999 + 0.003 and 1.005 + 0.005 as well as y-intercepts of 0.03 + 0.62
and —0.13 + 0.33 mM for the calibration and prediction data, respectively.
For glutamine, regression analysis indicates slopes of 0.994 + 0.006 and
1.000 + 0.015 as well as y-intercepts of 0.07 + 0.75 and 0.25 + 0.73 mM
for the calibration and prediction data, respectively.

The presence of glucose had no apparent adverse effect on our ability
to measure glutamine concentrations. A three-dimensional scatter plot
was prepared by plotting the measured percent error of prediction for
glucose as a function of glucose concentration and as a function of gluta-
mine concentration (plot not shown). Although there was an increase in
the percent error at lower concentrations of glucose, the percent error
was not influenced by the concentration of glutamine, We had suspected
that larger percent errors would be observed for low levels of glucose in
the presence of high concentrations of glutamine. Inspection of the data,
however, indicates no bias of this fashion,

Likewise, there does not seem to be an adverse effect by glucose on
our ability to measure glutamine. Percent errors at low glutamine concen-
trations are essentially the same regardless of the glucose concentration.
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Fig. 8. Concentration correlation plots for glucose (top) and for glutamine
(bottom) by coupling Fourier filtering with PLS regression.

CONCLUSION

The simultaneous measurement of glucose and glutamine concentra-
tions with near infrared (NIR) spectroscopy was demonstrated. Research
currently being conducted in our laboratories is utilizing NIR spectro-
scopy to analyze mixtures of increasing complexity with the ultimate goal
of simultaneously measuring glucose, glutamine, and other components
in actual mammalian and insect cell culture media. The standard error of
prediction found in the present research of 0.32 and 0.75 mM for glucose
and glutamine, respectively, are well within the precision levels neces-
sary for the practical monitoring of these components in mammalian and
insect cell cultures. The use of NIR spectroscopy to monitor these cell
cultures will provide many advantages over the use of biosensors because
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NIR spectroscopy is noninvasive, nondestructive, and can simultaneously
determine the concentration of many components, Such a monitoring
system will greatly benefit efforts to improve cell culture productivity by
using fed-batch cultures in which nutrient deprivation and toxic by-
product accumulation can be minimized.
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