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A new strategy for quantitative analysis of a major clinical biochemical indicator called glycated
hemoglobin (HbA1c) was proposed. The technique was based on the simultaneous near-infrared
(NIR) spectral determination of hemoglobin (Hb) and absolute HbA1c content (Hb �HbA1c) in
human hemolysate samples. Wavelength selections were accomplished using the improved
moving window partial least square (MWPLS) method for stability. Each model was established
using an approach based on randomness, similarity, and stability to obtain objective, stable, and
practical models. The optimal wavebands obtained using MWPLS were 958 to 1036 nm for Hb
and 1492 to 1858 nm for Hb �HbA1c, which were within the NIR overtone region. The validation
root mean square error and validation correlation coe±cients of prediction (V -SEP, V -RP) were
3.4 g L�1 and 0.967 for Hb, respectively, whereas the corresponding values for Hb �HbA1c were
0.63 g L�1 and 0.913. The corresponding V -SEP and V -RP were 0.40% and 0.829 for the relative
percentage of HbA1c. The experimental results con¯rm the feasibility for the quanti¯cation of
HbA1c based on simultaneous NIR spectroscopic analyses of Hb and Hb �HbA1c.
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1. Introduction

The incidence of diabetes shows an increasing trend,
and has become a serious threat to human health.
Thus, improving the accuracy in the diagnosis of
diabetes and strengthening prevention measures are
signi¯cant. In traditional diagnoses and therapeutic

monitoring of diabetes, various parameters, such as
fasting blood glucose, postprandial blood glucose
and oral glucose tolerance, are determined. How-
ever, the measured values of these parameters only
correspond to the instantaneous blood glucose level.
Glycated hemoglobin (Hb), which is an e®ective
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index of long-term blood glucose level, has been
widely used in the diagnosis of diabetes mellitus, as
well as in evaluating the e®ects of therapy on diabetes
mellitus. Glycated Hb comprises HbA1 and other
Hb-glucose adducts. HbA1 is made up of HbA1a,
HbA1b, and HbA1c. HbA1c, which is the major
component of HbA1, is formed by a nonenzymatic
irreversible process of combination of the aldehyde
group of glucose with the amino-terminal valine of
the �-chain of Hb. This process comprises a sequence
of nonenzymatic reactions, known as Maillard reac-
tions.1 HbA1c is a major clinical biochemical indi-
cator of glycated Hb. The clinical value of HbA1c
is expressed as a unit of relative percentage, which
is equivalent to the ratio of the absolute content
of HbA1c and the amount of Hb. In clinical
practice, HbA1c is referenced to a nondiabetic range
of 4.0% to 6.0% [mean ¼ 5:0%, standard deviation
ðSDÞ ¼ 0:5%]. Phenotype-positive patients for dia-
betes mellitus are those with HbA1c >6.0%.2

Near-infrared (NIR) spectroscopy mainly re°ects
absorption of the overtone and combination of vi-
brations of a functional group X-H (such as C–H,
O–H, and N–H). This rapid simple technique is
commonly used in the ¯elds of agriculture,3 food,4

environment,5 medicine,6 and pharmaceuticals,7

among others.8

NIR spectroscopy has been extensively applied
in biomedicine. Computational NIR formulations
for predicting and quantifying injuries and diseases
have become prevalent. Previous studies9,10 in-
volved the use of very high-¯delity two-dimensional
(2D) and three-dimensional (3D) simulations to
accurately and e±ciently predict and quantify local
and global injuries for organs such as the brain and
lungs. The researchers were able to (i) noninvasively
\numerically penetrate" the tissues and (ii) recon-
struct the optical properties of oxygenated and de-
oxygenated blood in the presence of water. These
numerical noninvasive measurements were used to
predict the extent and severity of organ hemor-
rhage/injury because the use of the traditional
method for clinical determination is di±cult. NIR
has signi¯cant potential for clinical diagnosis.

To the best of our knowledge, a quanti¯cation
method for screening preliminary diabetes indi-
cators (i.e., HbA1c) using NIR spectroscopy has not
been developed. Hb is a macromolecule that contains
various X-H functional groups, which have signi¯-
cant absorption in theNIR region. Chemical-free and
rapid analysis of Hb using NIR spectroscopy has

been the focus of previous studies.11–13 The Hb
glycation process (Maillard reactions) involves some
functional groups that contain hydrogen; thus, NIR
spectroscopy can be used to obtain information
about glycated Hb.

However, as a relative percentage of total Hb,
HbA1c and spectral absorbance do not ful¯ll Beer's
law because the absolute content (Hb �HbA1c) of
the samples with the same relative percentage
(HbA1c) may vary when the amount of total Hb is
di®erent. The spectral absorption caused by mol-
ecular vibration also varies. Therefore, the relative
percentage of HbA1c cannot be measured directly
using NIR spectroscopy.

Indirect measurement of HbA1c is considered.
Given that Hb levels can be measured by NIR
spectroscopy,11–13 we assume that Hb �HbA1c can
also be measured using the same method. With the
simultaneous measurement of the two indicators,
the predictive value of HbA1c can be obtained. In
this study, we performed experiments to con¯rm the
feasibility of simultaneous quantitative analysis of
Hb �HbA1c and Hb using NIR spectroscopy.

Partial least square (PLS) regression analysis is
used for comprehensive screening of spectroscopic
data, extracting information variables, and over-
coming spectral co-linearity. However, waveband
selection is necessary because improving the pre-
diction capability of PLS is di±cult when the signal-
to-noise ratio (SNR) of the waveband is not ade-
quately high. Human blood is a complex system
with multiple components. The spectroscopic anal-
ysis of a single blood component requires mitiga-
tion of the interference of other components and
noise. Appropriate wavelength selection is an im-
portant albeit di±cult, technical aspect. Improv-
ing the e®ectiveness of spectral prediction, reducing
method complexity, and designing specialized
spectrometers with high SNR are important.
Therefore, appropriate chemometric methods are
necessary for wavelength optimization. Moving
window PLS (MWPLS) is an e®ective method for
waveband selection.14–16

Di®erences in the partitioning of calibration and
prediction sets can result in °uctuations in the
predictions and parameters, thus yielding unstable
results. In this study, a portion of samples was
randomly selected as a validation set, which was not
subjected to the modeling optimization process. The
remaining samples were used as the modeling set.
Based on the varied partitioning of the calibration
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and prediction sets in the modeling set, the
MWPLS method was improved by considering the
stability. Using NIR spectroscopy with improved
MWPLS method, simultaneous quantitative anal-
ysis of Hb and Hb �HbA1c with wavelength selec-
tion was performed. Thus, quanti¯cation of HbA1c
was achieved. The divisions for the calibration and
prediction sets were based on certain similarities to
avoid evaluation distortion.

2. Materials and Methods

2.1. Experimental materials,

instruments, and measurement
methods

A total of 224 samples of human peripheral blood
were collected and placed in 0.2% ethylenediamine
tetraacetic acid-containing tubes. The Hb values of
the samples were measured using a BC-3000Plus
automatic blood cell analyzer (Shenzhen Mairui,
China). The measured Hb values ranged from 77 to
156 g L�1. The mean value and the SD were 131.2
and 14.3 g L�1, respectively. The HbA1c values
of the samples were measured by high-pressure
liquid chromatography analysis method using an
ADAMSTM A1c HA-8160 automatic glycated Hb
analyzer (ARKRAY, Japan). The measured HbA1c
values ranged from 4.6% to 10.8%, with mean value
and SD of 6.40% and 0.84%, respectively. The
obtained Hb �HbA1c values ranged from 4.2 to
15.0 g L�1, with mean value and SD of 8.42 and
1.58 g L�1, respectively. Based on the cut-o® values
of HbA1c (6.0%), 84 negative and 140 positive
samples were obtained.

Scattering and noise disturbance may occur
when light passes through the samples because the
peripheral blood samples are highly viscous. Fur-
thermore, Hb is contained within an erythrocyte,
and the noise from the cell membrane should be
overcome to determine Hb levels. Thus, the accu-
racy of spectral analysis of peripheral blood samples
may decrease.

We compared the e®ects of peripheral blood and
hemolysate samples on the prediction capability of
the method in our previous work.17 The peripheral
blood samples were con¯gured to 2�, 3�, 4�, 5�,
and 6� dilute hemolytic solution samples. Six
sample groups (including the group of peripheral
blood samples) were obtained, and then calibration
and prediction models for Hb were established

in each group based on two wavebands (4000 to
600 cm�1 and 1800 to 800 cm�1). The results
showed that the group with the peripheral blood
samples had signi¯cantly low prediction accuracy,
whereas the prediction for each group of hemolysate
samples was close to each other. This result suggests
that peripheral blood has high noise disturbance, so
hemolysate samples were used. Given that some
weak information corresponding to glycated Hb
may be lost at low concentration, 2� dilute hemo-
lytic solutions were adopted in this study.

The peripheral blood samples were diluted with
distilled water to rupture the erythrocytes and
obtain hemolysate samples. A volume of blood
samples was mixed with an equal volume of distilled
water. The samples were then used for spectro-
metric measurement.

The spectroscopy instrument used was an XDS
Rapid ContentTM Liquid Grating Spectrometer
(FOSS, Denmark) equipped with a transmission
accessory and a 2-mm cuvette. The scanning scope
of the spectrum was 780 to 2498 nm with a 2-nm
wavelength interval. The scanning scope included
the overall NIR region. Wavebands of 780 to
1100 nm and 1100 to 2498 nm were employed for Si
and PbS detection, respectively. Each sample
(0.8mL) was measured thrice, and the mean value
of the three measurements was used for modeling.
The spectra were obtained at 25� 1�C and 45� 1%
relative humidity.

2.2. Sample set division and

model optimization frame

Some of the samples were randomly selected as the
validation set. The remaining samples were used as
the modeling set. The modeling set was divided
many times into similar calibration and prediction
sets. Calibration and prediction were performed for
each division i. The root mean square error for the
calibration and prediction were denoted as M-SECi

and M-SEPi, respectively, and their corresponding
correlation coe±cients were denoted as M-RC;i

and M-RP;i. Based on all divisions, the mean value
and SD of the root mean square error and corre-
lation coe±cients for the prediction were further
calculated and denoted as M-SEPAve, M-RP;Ave,
M-SEPStd, andM-RP;Std. These values were used to
analyze the prediction accuracy and modeling
stability. The equation M�SEPþ ¼ M�SEPAve þ
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M�SEPStd was used as a comprehensive indicator
of prediction accuracy and stability. Smaller
M-SEPþ indicated higher accuracy and stability of
the model. The model parameters were selected
based on the minimum M-SEPþ. The selected
model was then revalidated against the validation
set. The randomly selected validation samples,
which were not subjected to the modeling optimiz-
ation process, were regarded as the prediction set,
whereas the original modeling set was used as cali-
bration set. The validation root mean square error
and validation correlation coe±cients of prediction
were then calculated and denoted as V -SEP and
V -RP , respectively.

The measured HbA1c value, which does not
meet Beer's law, was the relative percentage of
HbA1c to the total Hb. However, the absolute
content (Hb �HbA1c) of HbA1c corresponded to
the molecular structure and molecular vibration,
which should be used in the spectroscopic analysis.
Quantitative analyses of Hb and Hb �HbA1c
were performed independently using the same
modeling process. A total of 74 samples (29 negative
samples and 45 positive samples) were randomly
selected from a total of 224 samples; these selected
samples were used as the validation set. The
remaining 150 samples (55 negative samples and 95
positive samples) were used as the modeling set.
The modeling set was divided into similar cali-
bration (80 samples) and prediction (70 samples)
sets 100 times.

When the division for the calibration and pre-
diction sets is random, the modeling process may
appear as a distorted evaluation because of con-
tingency. For example, a randomly generated cali-
bration set comprises samples with low Hb values,
whereas the prediction set may comprise samples
with high Hb values. Improving the prediction
under such conditions is di±cult, and often yields
incorrect models. Given these considerations, the
modeling set should be divided into a calibration set
and a prediction set with certain similarity. In this
study, the similarity of sample sets was de¯ned
using the measured values. When the mean value
and SD of the measured values in the calibration set
were close to those in the prediction set, the two sets
could be regarded as similar. The mean values and
SDs of the Hb values in the calibration, prediction,
and entire modeling sets were denoted as HbC;Ave,
HbC;Std, HbP;Ave, HbP;Std, HbAve, and HbStd, re-
spectively. The similarity degree was de¯ned as

follows:

� ¼ max
jHbC;Ave �HbP;Avej

HbAve

;
jHbC;Std �HbP;Stdj

HbStd

� �

�100%: ð1Þ

Similarity is high when the value of � is small.
According to this de¯nition, all of the modeling
samples were randomly divided into calibration and
prediction sets for a su±cient number of times using
a computer program, and then 100 divisions that
satisfy � < 5% were retained for modeling.

2.3. Optimization frame of the
MWPLS method

The spectrum of complex systems (such as blood
samples) includes multiple absorptions of various
components, which means that the spectral absorp-
tion that corresponds to each wavelength is not
purely dependent on a single component.Achieving a
desirable analytical e®ect using the spectral absorp-
tion peaks of some speci¯c components for modeling
is usually di±cult because of too much interference.
Conversely, the use of statistics and chemometric
methods, according to the prediction capability, is a
convenient method in determining the modeling
analytical waveband. This method may not deter-
mine the absorption peaks of relevant components,
but it can obtain an appropriate analyticalwaveband
for the combined absorption of all components.

In this study, the modeling process was based on
MWPLS method, which was used to search for an
analytical waveband, instead of spectral absorption
peaks for modeling. In searching for the analytical
waveband, we traversed all of the wavebands and
compared their prediction e®ectiveness to obtain
the optimal waveband. The method fully considered
the absorbance of other compounds in ¯nding the
most suitable analytical waveband for modeling.

In the MWPLS method, consecutive spectral
data on N adjacent wavelengths were designated as
windows. By moving the window and changing its
size, PLS models of all of the windows in the entire
spectral collecting region were established, and the
optimal analytical wavebands were selected. Given
the position and length of the wavebands and the
PLS factor, the search parameters were set as fol-
lows: starting wavelength and its serial number (B),
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number of wavelengths (N), and number of PLS
factors (F ).18–20 The range of parameters B, N , and
F can be set based on the actual condition. The PLS
models were established for all of the combinations
(B, N , and F ). The corresponding M-SEPAve,
M-RP;Ave, M-SEPStd, M-RP;Std, and M-SEPþ were
then calculated.

PLS can comprehensively screen spectroscopic
data and extract information variables. The num-
ber of PLS factors F , which corresponds to the
number of integrated variables of the sample, is a
major parameter. The selection of a suitable F is
both necessary and di±cult.21,22 In this study, F
was selected by considering the number of divisions
for the calibration and prediction sets. Thus, the
optimized F exhibited stability and practicality. All
wavebands corresponded to a unique combination
of parameters (B and N). The optimal F of the
corresponding PLS model was selected according to
the minimum M-SEPþ. The global optimal model
was further selected by comparing the minimum
M-SEPþ of all wavebands.

Instrument design typically involves some
restrictions, such as costs and material properties,
as well as position and number of wavelengths. In
some instances, the demand of actual conditions
cannot be met by the global optimal waveband.
Therefore, local optimal wavebands that correspond
to di®erent positions and number of wavelengths
are necessary. In evaluating the predictive e®ects of
di®erent starting wavelengths, B was ¯xed and the
other parameters (N and F ) were arbitrarily
changed. The local optimal model corresponding to
B was selected based on the minimum M-SEPþ. In
evaluating the predictive e®ects of di®erent num-
bers of wavelength, N was ¯xed and the other
parameters (B and F ) were arbitrarily changed.
The local optimal model corresponding to N was
also selected based on the minimum M-SEPþ.

The search range for the MWPLS method cov-
ered the overall scanning region from 780 to
2498 nm with 860 wavelengths. B was set as B 2
f1; 2; . . . ; 860g, and F was set as F 2 f1; 2; . . . ; 20g.
To reduce the workload and maintain representa-
tiveness, N were set as follows:

N 2 f1; 2; . . . ; 100g [ f110; 112; . . . ; 200g
[ f210; 220; . . . ; 500g [ f520; 540; . . . ; 860g:

The computer platform was constructed using
MATLAB 7.6 software.

3. Results and Discussion

3.1. Waveband optimization using the

MWPLS method

The NIR spectra of the 224 human hemolysate
samples on the overall scanning region (780 to
2498 nm) are shown in Fig. 1. The PLS models for
Hb and Hb �HbA1c were ¯rst established based on
the overall scanning region (780 to 2498 nm). The
results of the prediction accuracy and stability are
summarized in Table 1. The results show that the
predicted values and clinically measured values
obtained from the 100 divisions were highly corre-
lated for Hb, but not for Hb �HbA1c. Moreover, the
number of adopted wavelengths was 860, and the
model had high complexity. To improve the pre-
diction accuracy and reduce the complexity, wave-
band optimization was further performed using
the MWPLS method. Based on the minimum
M-SEPþ, the optimal MWPLS models for Hb and
Hb �HbA1c were selected. The corresponding par-
ameters B, N , and F and the prediction e®ects
M-SEPAve, M-RP;Ave, M-SEPStd, M-RP;Std, and
M-SEPþ are summarized in Table 2. The results
show that the optimal starting wavelength and N
were respectively 958 nm and 40 for Hb, and 1492
nm and 184 for Hb �HbA1c. The corresponding
wavebands were 958 to 1036 nm for Hb, and 1492 to
1858 nm for Hb �HbA1c, which were within the
NIR overtone region. The model complexity sig-
ni¯cantly decreased. Tables 1 and 2 show that the
M-SEPAve and M-SEPþ of the optimal MWPLS
models were signi¯cantly lower than those of the
overall scanning region for the two indicators. Thus,
the prediction accuracy and stability of the optimal

Fig. 1. NIR spectra of 224 human hemolysate samples in
overall scanning region (780 to 2498 nm).

Quanti¯cation of glycated hemoglobin indicator HbA1c through NIR spectroscopy
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MWPLS models were signi¯cantly improved in
both indicators, speci¯cally for Hb �HbA1c.

The optimal M-SEPþ, which corresponds to
each starting wavelength and N for the two indi-
cators, are shown in Figs. 2 to 5. For the Hb indi-
cator, Figs. 2 and 3 show the minimum M-SEPþ
achieved for the starting wavelength of 958 nm and
N ¼ 40. For the Hb �HbA1c indicator, Figs. 4 and
5 show the minimum M-SEPþ achieved for the
starting wavelength of 1492 nm and N ¼ 184. The
results indicate that these parameters had the best
prediction accuracy and stability. These data may
serve as valuable reference for designing the split-
ting system of spectroscopic instruments. Some
local optimal models whose predictions are close to
those of the global optimal model are still a good
choice. These models address the restrictions, such
as costs and material properties, as well as the
position and number of wavelengths in instrument
design.

3.2. Model validation

The randomly selected validation samples, which
were excluded in the modeling optimization process,
were used to validate the optimal MWPLS models
(958 to 1036 nm for Hb, and 1492 to 1858 nm for

Table 2. Prediction accuracy and stability of PLS models based on the optimal MWPLS wavebands for Hb and Hb �HbA1c.

Indicator Waveband (nm) N F M-SEPAve (g L
�1) M-SEPStd (g L�1) M-RP;Ave M-RP;Std M-SEPþ (g L�1)

Hb 958–1036 40 11 3.7 0.3 0.971 0.005 4.0
Hb � HbA1c 1492–1858 184 7 0.64 0.07 0.931 0.015 0.71

Fig. 2. Optimal M-SEPþ values corresponding to each
starting wavelength for Hb.

Table 1. Prediction accuracy and stability of PLS models based on the overall scanning region for Hb and Hb � HbA1c.

Indicator Waveband (nm) N F M-SEPAve (g L
�1) M-SEPStd (g L�1) M-RP;Ave M-RP;Std M-SEPþ (g L�1)

Hb 780–2498 860 6 4.3 0.4 0.961 0.007 4.7
Hb � HbA1c 780–2498 860 8 1.29 0.09 0.669 0.051 1.38

Fig. 3. Optimal M-SEPþ values corresponding to each
number of wavelength for Hb.

Fig. 4. Optimal M-SEPþ values corresponding to each
starting wavelength for Hb � HbA1c.
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Hb �HbA1c). The PLS regression coe±cients were
calculated using the spectral data and clinically
measured values in the modeling set based on the
corresponding parameters. The predicted values of
the validation samples were then calculated using
the obtained regression coe±cients and spectra of
the validation samples.

Figures 6 and 7 show the relationship between
the predicted and clinically measured values of 74
validation samples for Hb and Hb �HbA1c. Table 3
shows the validation e®ects (V -SEP and V -RP).
The results indicate that the two models had high
validation e®ects. Hb and Hb �HbA1c prediction
values of the samples are close to those of the
clinically measured values. Satisfactory validation
e®ects were achieved for the random validation

samples because stability was considered in the
modeling optimization process.

The predicted values of HbA1c was further cal-
culated based on the predicted Hb and Hb �HbA1c
values. The corresponding V -SEP and V -RP were
0.40% and 0.829 for HbA1c. The relationship
between the predicted and clinically measured
values of the 74 validation samples for HbA1c is
shown in Fig. 8. The results show that the predicted
values and clinically measured values were also
highly correlated for HbA1c. The experimental
results con¯rm the feasibility for the quantitative
analysis of HbA1c based on the simultaneous NIR
spectroscopic analyses of Hb and Hb �HbA1c.

HbA1c is the main preliminary screening indi-
cator for diabetes mellitus. The classi¯cation of
the negative and positive samples can be observed
using the 2D diagram of Hb and HbA1c. Among
the 74 validation samples, 29 are negative and
45 are positive. Figure 9 shows the corresponding
2D diagrams for the predicted values of the 74
validation samples. The corresponding speci¯city
and sensitivity were 90% and 96%, respectively.

Fig. 5. Optimal M-SEPþ values corresponding to each
number of wavelength for Hb �HbA1c.

Fig. 6. Relationship between the predicted and the measured
values of the validation samples at 958 to 1036 nm for Hb.

Fig. 7. Relationship between the predicted and the measured
values of the validation samples at 1492 to 1858 nm for
Hb �HbA1c.

Table 3. Validation e®ects of the optimal MWPLS models
for Hb and Hb �HbA1c.

Indicator
Waveband

(nm) N F

V -SEP

(g L�1) V -RP

Hb 958–1036 40 11 3.4 0.967
Hb �HbA1c 1492–1858 184 7 0.63 0.913
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The prediction errors were distributed mainly
around the cut-o® line (HbA1c ¼ 6%). The neigh-
boring region of the cut-o® line is blurry, and a few
prediction errors in this region are understandable.
The results also showed the feasibility for screening
samples that are negative and positive for diabetes
mellitus.

4. Conclusion

A rapid simultaneous determination method for Hb
and Hb �HbA1c based on NIR spectroscopy was
developed. Quanti¯cation of the relative percentage
HbA1c was achieved using this method. Wave-
length selections were accomplished using the

improved MWPLS method for stability. Each
model was established using a modeling approach
based on randomness, similarity, and stability to
obtain objective, stable, and practical models.

The optimal wavebands screened using MWPLS
were 958 to 1036 nm for Hb and 1492 to 1858 nm for
Hb �HbA1c, which were within the NIR overtone
region. V -SEP and V -RP were 3.4 g L�1 and 0.967
for Hb, respectively, and the corresponding values
for Hb �HbA1c were 0.63 g L�1 and 0.913. The two
models achieved high validation e®ects. The pre-
dicted values of HbA1c were calculated based on the
spectral predicted Hb and Hb �HbA1c values. The
corresponding V -SEP and V -RP were 0.40% and
0.829. The results show that the predicted values
and the clinically measured values were also highly
correlated for HbA1c. The experimental results
con¯rm the feasibility for the quantitative analysis
of HbA1c based on simultaneous NIR spectroscopic
analyses of Hb and Hb �HbA1c. This study also
provides valuable references for designing special-
ized spectrometers.
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