# Noninvasive Blood Glucose Monitoring in the 2.0-2.5mm Wavelength Range

### Jonathon T. Olesberg

Department of Chemistry and the Optical Science and Technology Center The University of Iowa



This work was supported by the NIH, NASA, and Inverness Medical Technologies, UK

# Outline

### **Introduction to Diabetes**

- What is diabetes?
- Why is noninvasive glucose monitoring valuable?

#### **Noninvasive Monitoring**

- How does noninvasive glucose detection work?
- What are the current limitations?

#### **Mid-IR Technology**

- How can IR semiconductor technology help?
- What are the key requirements for glucose sensing using laser diodes?

# Diabetes

### **Affects 16 million Americans**

### What is diabetes?

• Breakdown of the body's ability to regulate the amount of glucose (sugar) in the blood stream





### Glucose

- Produced in liver from digested carbohydrates
- Distributed to cells in the body by way of the blood stream

### Insulin

- Hormone produced in the pancreas
- Regulates amount of glucose in blood
  - Tells liver to slow down glucose release
  - Tells cells to increase glucose intake
- In diabetics, insulin is not produced or is ineffective

### Normal glucose level ~5.5 mM (100 mg/dL)

# **Manual Control of Glucose Levels**

#### What happens when glucose is not regulated?

- Too much glucose (hyperglycemia):
  - Long-term danger
  - Excess glucose reacts with amine groups on proteins
    - eyes (blindness)
    - nerve damage
    - kidney (renal failure)
- Too little glucose (hypoglycemia):
  - Acute danger
  - Brain dependent on continuous glucose supply
    - confusion, coma, death

#### **Self-regulation**

- Draw blood and measure glucose 4-6 times per day
- Administer insulin manually

#### **Problems with self-regulation**

- Painful, risk of infection
- Cost of lancets, test strips
- Can't do it while asleep

#### Goal of our work:

• Tools for measuring blood glucose without having to draw blood



# **Strategies for Optical Glucose Monitoring**

- Near-infrared spectroscopy
- Raman spectroscopy
- Rotation of polarized light
- Light scattering
- RF impedance

### Near-infrared transmission spectroscopy



### **Water Transmission Windows**



1 AU = 1 unit of optical density (OD)

# Interaction of Glucose with Light

**Glucose molecule:**  $C_6H_{12}O_6$ 



iteraction strength

#### Vibrational spectroscopy

- Bending and stretching modes of C-H, N-H, and O-H bonds (4-10μm)
- Nonlinear combinations of stretching and bending modes (2.0-2.5μm)
- First overtone of C-H stretching modes (1.5-1.8μm)
- Second overtones and higher-order combinations (0.8-1.2μm)

# The 2.0-2.5mm wavelength range has the best analytical information of any of the available water transmission windows

### **Glucose Absorbance Spectrum**



#### **Spectral uniqueness**

• The wavelength and width of absorption features depend on the local chemical environment surrounding the bonds

### **Absorbance Spectra of Other Components**



Wavelength (µm)

Information at *multiple* wavelengths is required to uniquely identify glucose

# **Seeing Through Interference**

# How do we isolate the glucose information from a spectral measurement?

### **Partial Least Squares Regression (PLS)**



### **Calibration spectrum**

- Calibration describes the systematic variation in the calibration spectra that is the most highly correlated with glucose concentration
- Inner product of calibration spectrum and the spectrum of a sample gives the glucose concentration
- Calibration spectrum is orthogonal to non-glucose spectral variations (e.g., due to other skin components, hemoglobin, urea, lactate, skin temperature, etc.)

# In Vitro Measurement of Glucose

- 80 samples containing glucose, lactate, alanine, ascorbate, urea, and triacetin
- Sample set designed to avoid correlations between component concentrations
- 2.0-2.5µm wavelength range



Actual Glucose Concentration (mM)

The analytical information needed to extract glucose concentration in the presence of other analytes is present

### **Other Analytes**



### The Danger of False Calibrations with PLS

Partial least squares regression is a very powerful technique, but it must be handled carefully

Great care is required to avoid bogus calibrations that seem to work well

• Experimental protocols must eliminate correlation between glucose concentration and all other parameters, *including time* 

Calibrations based on glucose tolerance tests are problematic

Arnold, et al., Analytical Chemistry 70, 1773 (1998)

### From In Vitro to In Vivo Measurements

#### **Increased sample complexity**

• Greater number of chemical components

#### **Decreased sample throughput**

- Water absorptivity at 2.2µm ~ 1 AU/mm
- Skin absorptivity at 2.2µm ~ 2 AU/mm

### Factor of 10x reduction in signal with respect to water



# In Vivo Measurement of Glucose

#### Noninvasive measurement

- 1.5-1.8µm wavelength range
- Measurements through tongue
- Calibration based on 29-day period
- Results are for the subsequent
  10-day period
- Prediction error 3.4 mM

### What can be improved?

- Spectral range
- Signal-to-noise ratio



Burmeister, Diabetes Technology and Therapeutics 2, 5 (2000)

# **Target Signal-to-Noise Ratio**



#### Target signal-to-noise ratio

- Assume 1mm path length, 0.5mM change in glucose
- Resolving a change in absorbance of  $10\mu AU$  requires detecting a change in transmission of 1 part in 50,000 (20ppm)
- Require a signal-to-noise ratio of ~50,000.

# Looking for a very small signal in the presence of a very large absorption background

### **Current In Vivo Measurement System**

### **Broadband optical source**

• Tungsten lamp



#### **FTIR spectrometer**

- High resolution
- Excellent wavelength stability
- High throughput



#### **Single-element detector**

- Extended wavelength InGaAs
- 2.6µm cutoff
- 1mm diameter
- 2-stage TE cooled (-40°C)
- $D^* = 2x10^{12} \text{ cmHz}^{1/2}/\text{W} (\text{NEP} \sim 50 \text{fW/Hz}^{1/2})$

# How Can Mid-IR Semiconductor Technology Help?

### Key wavelength range: 2.2 - 2.4mm

#### **Detectors**

- Present work using FTIR spectroscopy is detector-noise limited
- Unstrained Sb-based detectors can potentially outperform highly-strained InGaAs materials

2-stage TE cooled InGaAs:  $D^* = 2 \times 10^{12} \text{ cmHz}^{1/2} \text{/W}$ 

### LED's

- High-brightness for coupling into fiber optics with limited apertures
- Commercially available 2.3µm LED's (~1/4 mW)
- Need an improvement of factor of 4 to outperform tungsten lamps

#### **Laser Diodes**

• High-power sources can help overcome low skin throughput (10's mW)

### Laser Diode Spectroscopy

#### Requires tunability or integration of many single-wavelength diodes

• Multiple wavelengths required to distinguish between many skin components with overlapping spectral signatures

#### Very different from gas sensing

- Broad bands rather than narrow features
- Require 200nm tuning range (2.2-2.4µm)
- Line width is not important, but wavelength stability and reproducibility are





- Variability in wavelength produces variability in signal by  $\Delta s = ds/d\lambda \Delta \lambda$
- In order to achieve a SNR of 50,000, we require  $\Delta\lambda = 0.01$ -0.05nm

#### Consequence of large SNR requirement

# **Tuning Strategies**

#### Temperature

- Wide tuning range
- Slow tuning
- Imprecise

#### Electronic

- Variation of drive current or variation of index of refraction with injected charge density
- Convenient
- Fast tuning

#### **External cavity**

- Bulky, not as convenient as electronic tuning
- Wide tuning range
- Grating-based approaches have moving parts, moderate tuning speeds

## **Temperature Tuning**

Laser diodes provided by the Fraunhofer Institute

- Appl. Phys. Lett. 77, 1581 (2000)
- Strained GaInAsSb quantum wells



### **Temperature Tuning**

Laser diodes provided by the Fraunhofer Institute

- Appl. Phys. Lett. 77, 1581 (2000)
- Strained GaInAsSb quantum wells



## **External Cavity Tuning With an AOTF**



#### Acousto-optic tunable filter (AOTF)

- No moving parts
- High wavelength precision (1ppm)
- Fast tuning, random wavelength access
- Tuning range of 25nm has been obtained with 2.3µm devices

• Wider tuning should be available with stronger AR coating on front facet and shorter stripe lengths

# Conclusions

The analytical information required to determine glucose concentration is available in near-IR wavelength range

- Best information is in the 2.0-2.5 $\mu$ m range
- Glucose spectrum is unique

### Noninvasive monitoring of glucose is difficult

- Many overlapping spectral contributions
- Optical throughput of skin is small
- Glucose absorbance is small

### Accurate glucose determination requires

- Very large SNR's
- Measurement at many wavelengths

### Mid-IR semiconductor technology can help in this effort

- Improved detector performance
- High-brightness LED's
- Laser diodes
  - Moderate powers
  - Reproducible tunability