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Abstract
Background: Peptidyl arginine deiminase 4 (PAD4) is an enzyme that converts argi-
nine into citrulline. PAD4 is expressed in neutrophils that, when activated, can drive 
the formation of neutrophil extracellular traps (NETs). Uncontrolled activation of 
PAD4 and subsequent citrullination of proteins is increasingly recognized as a driver 
of (auto)immune diseases. Currently, our understanding of PAD4 structure–function 
relationships and activity control in vivo is incomplete.
Aims: To provide the current state-of-the-art on PAD4 structure-activity relation-
ships and involvement of PAD4 in autoimmune disorders as well as in thrombo-
inflammatory disease.
Materials & Methods: Literature review and molecular modelling
Results: In this review, we used molecular modelling to generate a three-dimensional 
structure of the complete PAD4 molecule. Using our model, we discuss the catalytic 
conversion of the arginine substrate to citrulline. Besides mechanistic insight into 
PAD4 function, we give an overview of biological functions of PAD4 and mechanisms 
that influence its activation. In addition, we discuss the crucial role of PAD4-mediated 
citrullination of histones during the formation of NETs. Subsequently, we focus on 
the role of PAD4-mediated NET formation and its role in pathogenesis of rheumatoid 
arthritis, sepsis and (immune-)thrombosis. Finally, we summarize current efforts to 
design different classes of PAD4 inhibitors that are being developed for improved 
treatment of autoimmune disorders as well as thrombo-inflammatory disease.
Discussion: Advances in PAD4 structure-function are still necessary to gain a com-
plete insight in mechanisms that control PAD4 activity in vivo. The involvement of 
PAD4 in several diseases signifies the need for a PAD4 inhibitor. Although progress 
has been made to produce an isotype specific and potent PAD4 inhibitor, currently no 
PAD4 inhibitor is ready for clinical use.
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1  |  INTRODUC TION

Posttranslational modification (PTM) of amino acids through the 
addition or removal of chemical groups greatly increases the level 
of regulation and diversity of protein function.1 Over the past 2 
decades, citrullination, or deimination, has been increasingly recog-
nized as a modifier of immune-mediated disorders. Citrullination is 
the irreversible conversion of an arginine to citrulline, which is cat-
alyzed by a group of enzymes that belong to the peptidyl arginine 
deiminase (PAD) family. The proposed chemical modification of argi-
nine into a citrulline by PAD42 is described in Figure 1.

Citrullination can greatly affect proteins, mainly because the 
positive charge of arginine is lost when it is converted to a citrul-
line.3 This way, citrullination can introduce novel protein structures, 
functions, and interactions, as summarized in Figure  2. When ci-
trullination alters the surface electrostatic potential of a protein, its 
inter-/intra-protein interactions can be affected.4 Likewise, protein 

dysfunction or unfolding may occur.5 Importantly, citrullination of 
proteins has been linked to the formation of autoimmune antibodies 
in several diseases, including rheumatoid arthritis (RA).6

In humans, five PAD isotypes are expressed: PAD1-4 and PAD6 
(PAD5 is identical to PAD4). PADs are highly conserved among differ-
ent isotypes as well as among different species.7 For example, PADs 
share approximately 50% to 55% sequence identity within a single 
species, and each PAD isotype exhibits 70% to 95% identity among 
different species. The high percentage of sequence similarity and 
identity of human PAD isoforms suggests that all human PAD isotypes 
have a similar tertiary structure. Moreover, the high conservation of 
amino acids at the active site indicates that these PADs catalyze the 
conversion of arginine to citrulline via the same mechanism.

The focus of this article, human PAD4, was first described in 
HL-60 cells and was found to participate in differentiation of HL-
60 cells into granulocytes and monocytes/macrophages.8 PAD4 is 
the only PAD isotype that carries a nuclear localization signal9 and 

Conclusion: More research into PAD4 structure and function and into the regulation of 
its activity is required for the development of PAD4 specific inhibitors that may prove 
vital to combat and prevent autoimmune disorders and (thrombo)inflammatory disease.

K E Y W O R D S
cancer, citrullination, immune disease, NETosis, neutrophil extracellular traps (NETs), PAD4, 
PAD4 inhibitors, protein arginine deiminase, rheumatoid arthritis (RA), sepsis, thrombosis

F I G U R E  1  Chemical modification of arginine to citrulline by PAD4. The mechanism of citrullination by PAD4, as adapted from Knuckley 
et al.2 The PAD4 residues Asp350 and Asp473 function as “anchor points” and sit at the bottom of the tunnel, forming strong interactions 
via two salt bridges with the guanidinium group of the arginine substrate. The actual catalytic process of deimination is initiated by 
nucleophilic attack of thiolate-form Cys645 on the guanidinium carbon of arginine, followed by stabilization of the tetrahedral intermediate 
through protonation by His471 (1). Subsequent collapse of the intermediate (2) yields free ammonia and an S-alkylthiouronium intermediate. 
This intermediate is then hydrolyzed by a water molecule yielding the original Cys645 thiolate and citrulline (3). Release of the peptide-
citrulline product finishes the catalytic cycle (4). On the right, the crystal structure of PAD4 together with the substrate arginine is shown. 
The PAD4 active site resides are shown in orange, arginine is shown in magenta. Yellow dotted lines represent hydrogen bonds between 
arginine and aspartic acids D350 and D473. PAD, peptidyl arginine deiminase
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is highly expressed in immune cells including granulocytes, mono-
cytes, macrophages,8 CD34(+) bone marrow cells, and multipotent 
progenitor cells.10 PAD4 mainly targets histones in the nucleus,11 
but other proteins, such as glycogen synthase kinase-3β (GSK3β),12 
p300,13 inhibitor of growth 4 (ING4),14 40S ribosomal protein S2,15 
and a disintegrin and metalloproteinase with a thrombospondin type 
1 motif, member 13 (ADAMTS13)16 have been reported to be citrulli-
nated by PAD4. Moreover, more than 100 different PAD4 substrates 
were identified in HEK293 T cells via mass spectrometric analysis, 
revealing a rather promiscuous substrate specificity for PAD4 with 
a modest preference for an RGG motif.17 Generally, for PAD4 the 
citrullination turnover rate is inversely correlated with the structural 
order of the substrate.18 The only substrate-specific limitation for 
citrullination seems to be the requirement for a small side chain at 
the R-2 position, to prevent steric inhibition.19

The aforementioned citrullination of nuclear histones by PAD4 
is recognized as a trigger in the formation of neutrophil extracellular 
traps (NETs). NETs have recently been discovered as an integral part of 
the innate immune system.20 NETs have the capacity to enhance im-
mune responses by trapping and killing bacteria. However, at the same 
time, NETs are indiscriminate with respect to their cytotoxicity, and 
uncontrolled NET formation contributes to damage of healthy tissue, 
which is why PAD4 has been described as a “double-edged sword.”21,22 
In neutrophils, different stimuli can result in the formation of NETs, 
which are produced in distinct cellular pathways.23,24 Unlike the clas-
sic NETosis pathway, PAD4 activation by calcium results in reactive 

oxygen species (ROS)-independent NET formation, in a process that 
has been named leukotoxic hypercitrullination.23 More and more stud-
ies have connected PAD4 or leukotoxic hypercitrullination to human 
diseases, including RA, sepsis, thrombosis, and cancer.25–29

Although the role of PAD4 in the development of disease is 
being increasingly uncovered, a complete mechanistic insight into 
factors that are required for the expression and regulation of PAD4 
activity is lacking. In this review, we summarize the available PAD4 
structure–function data, discuss physiologic functions, and pro-
vide an insight into mechanisms of PAD4 activation and regulation. 
Moreover, we provide an overview of the role of PAD4 in the patho-
genesis of thrombo-inflammatory and autoimmune disorders. We 
provide a complete structural overview of PAD4 as a scaffold that 
may be useful for the development of novel classes of inhibitors to 
more efficiently combat PAD4-mediated diseases.

2  |  THE STRUC TURE OF PAD4

The human PADI4 gene of 55,806 bases encodes for a 663-amino 
acid PAD4 monomer of 74  kDa. A PAD4 monomer consists of 
two domains: an N-terminal domain (residues Met1-Pro300) and 
a C-terminal catalytic domain (residues Asn301-Pro663). The N-
terminal domain can be divided into two immunoglobulin-like sub-
domains (subdomain I: residues Met1-Cys118; and subdomain II: 
residues Ala119-Pro300)30 (Figure  3A). The immunoglobulin-like 

F I G U R E  2  Consequences of citrullination. Overview of the possible consequences of citrullination. An orange circle represents a protein, 
a purple circle represents a protein interactor. For each mechanism, an example is given on the right. Arginine residues are shown as blue 
hexagons. Citrulline residues are shown as yellow diamonds
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domains are involved in different functions including cell–cell 
recognition, cell-surface receptors, and have been reported to 
serve functions in the immune system.31 The catalytic domain 
contains the active site and forms an α/β propeller structure.30 
Human PAD4 contains five Ca2+ binding sites. Ca1 and Ca2 are 
located in the C-terminal domain and are structurally involved in 
the calcium-induced conformational changes that occur when the 
functional active site cleft is generated.30 Ca3, Ca4, and Ca5 are 
noncatalytic calcium ions situated in the N-terminal domain and 
are thought to be required for stabilization of the active conforma-
tion of PAD4.32 At the N-terminus, there is a single nuclear locali-
zation signal (NLS) (Figure 3A), which is a (56-PPAKKKST-63) motif 
in which three continuous lysine residues 59 through 61 follow 
two proline residues.9 We have used the Homology Model suite 
implemented in YASARA program33 to build the regions that are 
missing from the reported incomplete X-ray structures of PAD4 in 
order to obtain a complete three-dimensional structure of human 
PAD4. From our homology model, it shows that the NLS adopts a 
loop conformation (Figure 3A), which is responsible for interaction 
with nuclear transport receptors to guide the passage of PAD4 
across the nuclear membrane.9 Under physiological conditions, 

PAD4 has a head to tail homodimeric conformation, and it was 
demonstrated that dimeric PAD4 expresses full catalytic activity 
and calcium binding.30 The dimerization of PAD4 is mediated by 
several electrostatic interactions of which those between Arg8 
from one subunit and Asp547 from another subunit is most impor-
tant, as was concluded from mutagenesis studies.34 Dissociation 
of dimer formation could reduce PAD4 enzymatic activity and 
calcium-binding cooperativity. Monomeric PAD4 has a residual 
25% to 50% enzyme activity compared with the dimeric enzyme.34

The PAD4 active site contains a negatively charged U-shaped 
tunnel that allows the arginine-containing substrates to bind through 
a so-called “front door” (Figure 3B).35 After catalysis, reaction prod-
ucts are released from the active site and leave the active site region 
through a so-called “back door” (Figure  3B).35 Enzymes with sub-
strate tunnels generally have high substrate selectivity, influenced 
by the depth and shape of the tunnel, with which they may select 
particular substrates of an appropriate chain length.36 The catalytic 
site is mainly formed by four active site residues (Asp350, His471, 
Asp473, Cys645) that are deeply buried in the tunnel (Figure 3B).30 
The conformation of arginine in the active site, flanked by Cys645 
and His471, is displayed in Figure 3B.

F I G U R E  3  The three-dimensional structure of PAD4. A, Full-length PAD4 monomer. The homology model of PAD4 is made using 
YASARA software based on the 3B1U PDB template. The NLS is shown in magenta, and the catalytic pocket is shown in orange. B, The 
catalytic site and substrate-binding pocket of PAD4. The arginine substrate containing histone tail (TARKS) is shown in yellow; active site 
residues are orange. The left panel shows the top view, where the TAKS residues of the histone tails are not shown. The front door and back 
door of the active site are indicated in the image. The right panel contains the side view of the binding pocket, where it is clear how only the 
substrate arginine protrudes into the active site. PAD, peptidyl arginine deiminase
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3  |  AC TIVATION AND REGUL ATION OF 
PAD4 AC TIVIT Y

Our understanding of the mechanisms that govern PAD4 activation 
and regulation is incomplete. Here, we provide an overview of fac-
tors or conditions that are known to contribute to the up- or down-
regulation of PAD4 enzyme activity, which have been graphically 
summarized in Figure S1.

As previously introduced, PAD4 is activated intracellularly fol-
lowing a Ca2+ wave. Calcium ionophores, such as Ionomycin and 
A23187 are therefore frequently used to activate PAD4 in vitro.37 
Calcium is known as a key regulator of PAD4 catalytic activity by 
its capacity to induce structural changes in PAD4. These confor-
mational changes accompany the transition of an inactive to an 
active PAD4 conformation.30,32 To achieve maximal activation in 
vitro, PAD4 requires typically 5 to 10 mM calcium to occupy its five 
calcium sites, which can be recognized from the PAD4 structure as 
described previously.30,32 However, intracellular calcium concentra-
tion range from 10  nM to 100  μM and the calcium concentration 
in blood ranges from 2.2 to 2.6  mM.38 This suggests that in vivo, 
other factors than calcium play a role in PAD4 activation. It has been 
suggested that cofactors may lower the requirement of PAD4 for 
calcium and assist in activation of PAD4, although this is, as of yet, 
a poorly understood mechanism. One example where the thresh-
old for PAD4 activation by calcium is lowered is present in some 
RA patients who produce antibodies that react with both PAD3 and 
PAD4.39 Compared with patients who only have anti-PAD4 anti-
bodies, patients with combined anti-PAD3/PAD4 cross-reactive an-
tibodies have the most erosive joint disease. Darrah et al. showed 
that the anti-PAD3/PAD4 cross-reactive antibodies can activate and 
increase the catalytic efficiency of PAD4 at low calcium concentra-
tions (0.2 mM).39 It was hypothesized that stabilization of the active 
conformation of PAD4 was achieved by binding of cross-reactive 
antibodies in a calcium-independent fashion.39 However, conclusive 
data supporting this mechanism are currently lacking.

Furthermore, independent of calcium concentration, it was 
shown that bicarbonate increases PAD4 activity, without altering 
the affinity of PAD4 for calcium.40 In the presence of bicarbonate, 
an increase of PAD4 catalyzed citrullination of histone H3 and fi-
brinogen was described. However, the in vitro determined optimal 
bicarbonate concentration for the modulation of PAD4 activity was 
around 22 mM. This concentration favors the activity of PAD4 in the 
extracellular environment, given that the bicarbonate concentration 
in human serum is 17 to 29 mM and inside cells it is <10 mM.41 How 
exactly bicarbonate can modulate PAD4 catalytic activity is still un-
known, and further experimental studies are needed to understand 
its mode of action.

3.1  |  Redox regulation

As early as in 1991, it was shown that three mouse PAD isoforms 
(PAD1-3) require a reducing environment for their enzymatic 

activity.42 PADs can be rapidly oxidized and become inactive after 
release into the extracellular space, and both H2O2 and ROS for-
mation can inhibit PAD activity in a dose-dependent manner.43,44 
Most likely, this requirement for a reducing environment for PAD4 
activity is due to the Cys645 residue requiring reduction to the thi-
olate form to allow nucleophilic attack of the guanidinium carbon of 
arginine (Figure  1). Reducing agents, such as dithiothreitol, Tris(2-
carboxyethyl) phosphine, or beta-mercaptoethanol, are used in vitro 
to preserve PAD4 activity. The intracellular environment is also 
regarded as a reducing environment. Damgaard et al. showed that 
lower millimolar range glutathione (GSH) as present in the cytoplasm 
was capable of activating PAD4 in an in vitro assay.44 However, the 
extracellular level of GSH (<1 mM) is too low to prevent the oxida-
tion of PAD4. Additionally, elevation of the oxidoreductase enzyme 
thioredoxin was observed in RA synovial fluid and plasma, and 
Nagar et al. proved the PAD4-activating capacity of thioredoxin at 
physiological concentration.45 Taken together, the redox state of the 
PAD4 environment may contribute to the regulation of PAD4 activ-
ity under physiological conditions.

3.2  |  PAD4 auto-citrullination

A further candidate for control of PAD4 activation is the process 
of auto-citrullination. PAD4 has been shown to be capable of cit-
rullinating itself on several positions, which was shown to affect 
PAD4 protein–protein interactions.46 Regarding the effect of auto-
citrullination on PAD4 activity, we showed in a recent publication 
that PAD4 auto-citrullination has no effect on its activity.47

4  |  PAD4 IN NET FORMATION

Neutrophils function as a first line of defense of the human innate im-
mune system.48 They migrate to sites of infection from the blood to 
engulf and kill invasive pathogens like bacteria, fungi, and viruses.49 
In response to an inflammatory environment, neutrophils can respond 
in several ways. More established are the NETs that neutrophils form 
as part of the innate immune response. NETs were first characterized 
in 2004 as a new mechanism of neutrophil activation in response to 
pathogens.50 Decondensed chromatin is regarded as the scaffold of 
NETs, which is decorated with granular and cytoplasmic proteins, in-
cluding neutrophil elastase, myeloperoxidase, cathepsin G, as well as 
histones.20 Recently, Thiama et al. used high-resolution microscopy to 
unravel the sequence of events during neutrophil extracellular trap for-
mation (NETosis). They report that, following stimulation, NET-forming 
neutrophils quickly disassemble their actin cytoskeleton and start 
shedding plasma membrane microvesicles. Subsequent remodeling 
of the vimentin and microtubule cytoskeletons precedes endoplasmic 
reticulum (ER) vesiculation. This is followed by chromatin decondensa-
tion and loss of nuclear lobularity, after which permeabilization of the 
nuclear envelope and plasma membrane occurs. Last, chromatin exits 
through the ruptured nuclear envelope into the cytoplasm and enters 
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the extracellular matrix after rupture of the plasma membrane.51 
Importantly, Thiama et al. additionally report that, chromatin decon-
densation, lamin meshwork destabilization, nuclear envelope rupture, 
and extracellular DNA release are PAD4-dependent processes dur-
ing NET formation.51 Interestingly, NETs can be formed as a result 
of several pathways. Initially, NETosis was reported as a mechanism 
that depends on ROS generated by neutrophil NADPH oxidase.52 In 
this mechanism, ROS production leads to destabilization of granule 
membranes and the nuclear envelope, which allows mixing of cyto-
plasmic and nuclear components. Cytoplastic neutrophil elastase (NE) 
can subsequently cleave the nuclear histones, which results in a de-
condensation of chromatin. However, it was discovered that inhibition 
of NADPH oxidase cannot prevent NET formation in response to the 
bacteria,53 hinting at an alternative NET formation pathway.50,54

Recent studies have revealed that PAD4-catalyzed histone ci-
trullination is a crucial step for NET formation in a ROS-independent 
pathway. During PAD4-mediated NET formation, or leukotoxic 
hypercitrullination,23 PAD4 citrullinates histones in neutrophils. 
Citrullinated histones lose positive surface charges that interact 
with the negatively charged DNA backbone, which results in de-
condensation of chromatin.55 Non-DNA-bound histones can sub-
sequently break the nuclear envelope and plasma membranes.56 
The inability for PAD4-deficient mice to form NETs in response to 
ionomycin shows the critical role PAD4 plays in this process.50,57 
In line with this, inhibition of PAD4 by the known PAD4 inhibitor 
Cl-amidine significantly reduces histone citrullination and prevents 
the formation of NET-like structures after stimulation of neutrophils 
with ionomycin.58

As introduced previously, NETs themselves are viewed as 
a double-edged sword.21,22 NETs are known to activate the 
Complement system through binding of C1q to extracellular DNA.59 
Additionally, NET's prime CD4+ T cells in a process that engages 
the T-cell receptor, and in doing so lower their activation thresh-
old.60 Additionally, NETs exacerbate inflammation through danger-
associated molecular pattern signaling.61 Especially extracellular 
histones resulting from NETs have been shown to damage tissues 
through activation of Toll-like receptors 2 and 461 and have a pro-
thrombotic effect through their capacity to activate platelets.62 
Furthermore, NETs can act as a scaffold for thrombus formation 
through binding of platelets, red blood cells and procoagulant mol-
ecules.63 In addition to this, extracellular activity of PAD4 has been 
postulated to be a driver of diseases through uncontrolled citrullina-
tion of proteins. As such, NET formation is seen as a link between 
inflammation and onset of several (autoimmune) diseases,64 some of 
which will be discussed in the next paragraph.

5  |  ROLE OF PAD4 IN PATHOGENESIS OF 
DISE A SES

Citrullination of proteins by PAD4 is associated with a multitude of 
disease. Here, we provide a detailed overview of the role of PAD4 in 
rheumatoid arthritis, sepsis, and thrombosis.

5.1  |  Rheumatoid arthritis

RA is one of the most common inflammatory autoimmune diseases 
and affects around 0.5% to 1.0% of the population worldwide.65 RA 
patients suffer from systemic inflammation, which leads to damag-
ing of synovial tissues resulting in movement restriction and dis-
ability.66 In past decades, a growing number of studies have pointed 
to dysregulation of PAD4-mediated citrullination of extracellular 
proteins as a driver of the autoimmune response in RA, as 75% of 
patients produce anti-citrullinated protein antibodies (ACPA). This 
leads to the working hypothesis that ongoing citrullination in RA 
synovial fluid provides autoantigens that lead to continuation of the 
inflammatory response.67 Associations between genetic variants 
of PAD4 and increased risk in RA development have been made. 
Recently, a recent meta-analysis of several studies that focused on 
the single nucleotide PAD4 polymorphism 104C/T indicated that 
the polymorphism associates with an increased risk for developing 
RA.68,69 The haplotype of the PADI4 gene that increases RA risk 
is linked to increased production of citrullinated peptides, further 
strengthening the connection between citrullination and RA.68 In 
2018, Tivawala et al. published the RA citrullinome, and identified 
many different citrullinated proteins in synovial fluid of patients with 
RA.70 Citrullinated proteins can be considered autoantigens that rec-
ognized as non-self by the immune system and induce autoantibody 
generation against citrulline-containing proteins.71 In short, uncon-
trolled citrullination of proteins can result in the immune system los-
ing tolerance-to-self. This principle was illustrated in a study with 
rats, which reports that the presence of citrullinated protein and 
PAD4 levels correlate with the severity of collagen-induced arthri-
tis.6 PAD4 knockout mice present with a significantly reduced ar-
thritis severity in a glucose-6-phosphate isomerase-induced arthritis 
model.72 In a collagen-induced arthritis mouse model it was shown 
that anti-collagen antibodies and inflammatory cytokine levels were 
remarkably decreased in PAD4 deficient mice compared with wild-
type mice.27

Importantly, ACPAs appear in an early stage of the disease and 
some are even regarded as a hallmark of RA diagnosis and predic-
tion. Because immunoglobulin G anti-filaggrin autoantibodies can 
recognize a citrulline epitope of various forms of filaggrin, they are 
regarded a very specific marker of RA.73 Importantly, higher ACPA 
titers correlate with disease severity.74 Anti-cyclic citrullinated pep-
tide autoantibodies have ~98% specificity and 68% to 75% sensitiv-
ity and can be used in early stage RA diagnosis.75

5.2  |  PAD4 in sepsis

Sepsis-related deaths account for approximately 20% of all global 
deaths, with approximately 50 million reported cases in 2017.76 A 
growing number of studies have demonstrated that NETs are one 
of the major contributors to disease severity in sepsis.77–79 As men-
tioned, citrullination of nuclear histones by PAD4 leading to decon-
densation of chromatin is a key step in the onset of NET formation. 
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NETs are formed within the vasculature during sepsis, in response 
to circulating pathogens.80 In the early stages of sepsis, depletion 
of NETs is not beneficial for the prevention or containment of a sys-
temic infection and it can even exacerbate the pathology, as was 
observed in a mouse model of polymicrobial sepsis.81 In severe sep-
sis, NETs and platelets can synergistically participate in pathogen 
containment. Histones were reported as major mediators of death 
in sepsis by contributing to endothelial damage and organ failure.77 
Increased histone levels correlated with mortality in sepsis patients 
and inversely correlated with platelet counts.28,82 Direct targeting 
of extracellular histones with histone antibodies, activated protein 
C, or heparin can significantly reduce mortality in different mouse 
models of sepsis.77 Recently, it was shown that citrullinated extracel-
lular histone H3 levels, a significant marker of NET formation,83 are 
elevated in wild-type mice compared with PAD4 knockout mice in a 
pneumonia-derived sepsis model.84 In a dual-insult mouse model of 
hemorrhagic shock and sepsis, deficiency of PAD4 resulted in de-
creased organ dysfunction and improved survival compared with 
wild-type animals.29 Therefore, prevention of NET formation by in-
hibition of PAD4 to block histone release is regarded as an attractive 
strategy to prevent NET-induced tissue damage in septic patients.

5.3  |  PAD4 and thrombosis

Thromboembolic conditions are currently the leading global cause 
of mortality.85 NETs, and by extension PAD4, are known mediators 
of thrombosis.86 This was established originally because cleavage of 
tissue factor pathway inhibitor by NET-bound serine proteases (NE, 
cathepsin G) has a pro-thrombotic effect.87 Interestingly NETs have 
been found in both venous and arterial thrombi, where they serve 
as a scaffold for platelets and red blood cells, facilitating their adhe-
sion and aggregation.88–90 Additionally NETs bind plasma proteins 
including fibronectin and von Willebrand factor (VWF),25 further 
contributing to thrombus formation. Constituents of NETs, primarily 
extracellular DNA and histones, also profoundly influence coagula-
tion.25 Levels of these NET biomarkers correlate with disease sever-
ity in thrombotic disorders including thrombotic microangiopathies 
and deep vein thrombosis. Extracellular DNA leads to thrombin gen-
eration in patients with sepsis,88 and in an experimental deep vein 
thrombosis model, was able to promote thrombosis through induc-
tion of platelet aggregation.25 Extracellular histones released from 
NETs increase plasma thrombin generation and thereby promote co-
agulation through TLR2 and TLR4 mediated activation of platelets.91 
Importantly, because NETs are primarily discussed in the context of 
inflammation, NETs can be formed in noninflammatory conditions, 
such as during exhaustive exercise.92 This finding, combined with 
the previously mentioned pro-coagulant properties of NETs has led 
researchers to view NET formation as a homeostatic process that 
must be tightly controlled.86 Inflammation driven activation of neu-
trophils, platelets, and vascular endothelial cells may promote a state 
of immune-thrombosis which is most likely driving to disease sever-
ity in for example COVID-19 patients.93

Because PAD4 is essential for NET formation, an increasing 
number of studies focus on the involvement of PAD4 in throm-
bosis. It was found that PAD4 knockout mice generate much less 
thrombi than wild-type mice after induction of an inferior vena cava 
stenosis.94 Depletion of PAD4 significantly reduced neutrophil and 
platelet accumulation at the areas of vascular injury, thereby pre-
venting venous thrombosis in a murine model of heparin-induced 
thrombocytopenia.26,95 PAD4 is a key player in the pathogenesis 
of thrombosis not only by triggering NET formation but also by 
citrullinating proteins that are involved in maintaining hemostasis. 
Evidence has been obtained for PAD4-mediated citrullination of 
serine protease inhibitors such as antithrombin, as well as fibrino-
gen and the VWF-cleaving protease ADAMTS13.70 Citrullination of 
serine protease inhibitors can result in activity loss, which in turn 
could result in dysregulation of blood coagulation.96 Citrullination 
of antithrombin abolished its ability to inhibit thrombin activation; 
however, increased levels of citrullinated antithrombin found in the 
plasma of RA and colorectal adenocarcinoma patients did not show 
association with thrombosis.97 Additionally, injection of PAD4 in vivo 
can induce citrullination of plasma proteins like ADAMTS13, thereby 
reducing the ability of ADAMTS13 to cleave VWF, resulting in the 
formation of prothrombotic VWF-platelet strings.16 Based on these 
findings, we hypothesize that PAD4-dependent citrullination of 
hemostatic proteins further modulates thrombus formation on the 
highly prothrombotic three-dimensional scaffold that results from 
NETosis. Therefore, PAD4-directed inhibitors provide a highly at-
tractive strategy to combat or prevent (immune-)thrombosis.

6  |  PAD4 INHIBITION

The contribution of PAD4 in the pathologies described above 
is a promising premise for therapeutic use of PAD4 inhibitors. 
Unfortunately, no physiological PAD4 inhibitors are known that 
could help guide inhibitor design. Furthermore, design of a PAD4 
isotype-specific inhibitor is complicated by the high structural 
conservation of the PAD active site among all isotypes. Inhibiting 
several PAD isotypes simultaneously is undesirable because each 
isotype is involved in separate biological pathways.7 An overview 
of the expression location and targets of each PAD isotype is given 
in Table S1. Nonetheless, recent years have seen substantial efforts 
made toward the design of therapeutically usable PAD4 inhibitors, 
especially by Thompson and colleagues. Both irreversible and re-
versible PAD4 inhibitors have been explored. Irreversible inhibitors 
contain a halo (commonly F-, Cl-) acetamidine group which cova-
lently binds to Cys645 in the PAD4 active site (Figure 4B). The first 
described PAD inhibitor of this class was 2-chloroacetamidine.98 
However, since then, multiple generations that improve upon 
the 2-chloroacetamine characteristics have been developed. 
Reversible PAD4 inhibitors are chemically more diverse, and rely 
on different mechanisms of PAD4 inhibition, such as guanidine-
containing compounds that interact with PAD4 active site residues 
(Figure 4C) and compounds that occupy both the “front door” and 
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“back door” of the U-shaped tunnel. This topic is extensively cov-
ered in a recent article by Nemmara and Thompson.99 The differ-
ent modes of action of irreversible and reversible PAD4 inhibitors 
are described in Figure 4. In conclusion, it appears very difficult to 
design PAD inhibitors to have a high selectivity for the PAD4 iso-
type in combination with achieving high potency. Currently, there 
is no PAD4 inhibitor with the required characteristics to be used 
therapeutically. We anticipate that high-throughput screening of 
small compounds in conjunction with in silico biomolecular model-
ling will have the potential to design novel classes of high-affinity, 
highly specific PAD4 inhibitors that can be successfully used for 
treatment of patients suffering from thrombosis and/or inflamma-
tory disorders.

7  |  CONCLUSION AND FUTURE 
PERSPEC TIVE

In recent years, PAD4, through its crucial role in NET formation, has 
emerged as a key driver of immune mediated diseases, thrombosis, 

and inflammatory disorders. In this review, we have summarized the 
state-of-the-art of PAD4 structure, activation, cellular functions, 
and its role in disease. Our knowledge on the structure–function re-
lationship of PAD4 is currently incomplete. A complete experimental 
structure of PAD4 is not yet available, and we have to partially rely 
on homology models as presented in this review for the design of 
novel classes of PAD4 inhibitors.

There are also still many unknowns in our understanding of the 
mechanisms that control PAD4 activity. Often, nonphysiological re-
ducing agents like dithiothreitol are used to activate PAD4 in vitro, 
in combination with Ca2+ concentrations that far exceed physiolog-
ical levels.32,45 Although hypothesized physiological coactivators of 
PAD4 are being investigated, there is currently no consensus on how 
PAD4 reaches full activity within the neutrophil nuclei. Additionally, 
the observation that PAD4 citrullinates plasma proteins like anti-
thrombin and ADAMTS13seems to be in direct contradiction to the 
fact that PAD4 requires a reducing environment to remain active in 
vitro. Clearly, additional research into the control of PAD4 activity 
in vivo is crucial to improve our understanding of this enigmatic and 
promiscuous enzyme.

F I G U R E  4  Irreversible and reversible inhibitors of PAD4. Here the crystal structure of PAD4 is shown together with a histone arginine 
(natural substrate, orange), the irreversible inhibitor o-Cl-amidine (magenta) and the reversible inhibitor GSK199 (magenta). In the left panel, 
the PAD4 residues that interact with the substrate or inhibitor are highlighted. In the right panel, the position of the substrate/inhibitor 
within the crystal structure is shown. A, PAD4 interactions with arginine from a histone tail (sequence 6-TARKS-10). B, PAD4 interactions 
with irreversible inhibitor o-Cl-amidine, where the covalent interaction with C645 is present. C, PAD4 interactions with reversible inhibitor 
GSK199. PAD, peptidyl arginine deiminase; TARKS, arginine substrate containing histone tail, represent 3-letter abbreviation for amino acids 
Threonine, Alanine, Arginine, Lysine, and Serine

A

B
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The double-edged sword nature of PAD4-facilitated NET for-
mation, however, is uncontested. The contribution of PAD4 to NET 
formation currently appears to be the major biological function of 
PAD4. NETs are capable of neutralizing pathogens, but also exacer-
bate inflammation and have multiple pro-thrombotic effects. Taken 
together, this indicates that NET formation is a balanced process, 
the full inhibition of which may not be desirable, and a rebalancing 
of this process could be a better approach to optimally combat dis-
ease.100 Nevertheless, PAD4 qualifies as a target for pharmacolog-
ical intervention. In this review we presented multiple generations 
of PAD4 inhibitors. However, there currently is no inhibitor that 
combines PAD4 isotype specificity with high potency. Especially 
the high conservation in active site structure between the different 
PAD isoforms makes specificity hard to achieve. Therefore, to design 
novel and specific PAD4 inhibitors, we propose that it is essential 
to focus on residues at the substrate binding pocket which could 
form specific interactions with PAD4-selective inhibitors. Several 
residues qualify for such condition, such as Arg374, which exists in 
PAD1 and PAD4 but not in PAD2 and PAD3; Arg639 is only present 
in PAD4; His640 only exists in PAD4 and PAD3. Disrupting PAD4 
dimerization, or blocking of the previously mentioned “back door” 
rather than “front door” could also be used to derive novel and se-
lective PAD4 inhibitors.

In conclusion, although the structures, functions, and inhibitions 
of PAD4 have been investigated and studied during the past few 
decades, there are still many questions surrounding PAD4 structure 
and function. Improving our understanding of this remarkable en-
zyme will pave the way for the development of potent and specific 
inhibitors, with exciting potential for therapeutic use.
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