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Technology for Non-Invasive Glucose Monitoring
H.M. Heiseet al., J. Near Infrared Spectrosc.6, 349–359 (1998)

Clinical chemistry and near infrared
spectroscopy: technology for non-invasive
glucose monitoring

H.M. Heise,* A. Bittner and R. Marbacha
Institut für Spektrochemie und Angewandte Spektroskopie, Bunsen-Kirchhoff-Str. 11, D-44139 Dortmund, Germany.

Non-invasive assays for blood glucose can be based on near infrared spectrometry of skin tissue using the diffuse
reflectance technique. Using a straightforward spectral variable selection based on choices from the optimum par-
tial least-squares (PLS) regression vector yields better results than using PLS calibration models with full spec-
trum evaluation previously reported. The pairs of variables are selected from the maxima and minima of the
regression weights, respectively, in decreasing order. Substantial improvements in the prediction performance of
such calibration models, compared to previous calibrations based on full spectrum evaluation, are obtained. An-
other aspect is the reduced number of spectral variables needed for robust calibration modeling. In addition, evi-
dence is provided for the physical effect, as manifested by the spectral glucose absorptivities, underlying the
individual single-person calibration models. Their regression vector structure shows very similar features as calcu-
lated for a glucose calibration experiment based on random human plasma samples. Novel techniques are pre-
sented for probing the intravascular fluid space using time-resolved near infrared spectroscopy of oral mucosa.
The pulsatile blood spectrum can be derived from these diffuse reflectance lip spectra by Fourier analysis. Future
applications and prospects for non-invasive blood analysis are discussed.

Keywords:near infrared spectroscopy, non-invasive glucose assay, multivariate calibration, multiple linear regression,
pulsatile spectroscopy.

Introduction
Demands for versatile medical diagnostic meth-

ods have caused a tremendous increase in the appli-
cation of near infrared (NIR) spectroscopy.
Research into non-invasive instrumentation for me-
tabolites based on such technology is currently car-
ried out by many researchers; an overview to this
field can be found in References 1–4. There are other

spectroscopic techniques proposed for non-invasive
monitoring. Recent publications cover assays based
on luminescence decay of a long lifetime
metal–ligand complex,5 on optical activity6 or by us-
ing Raman spectroscopy.7,8 However, only feasibil-
ity studies have been presented so far using the latter
techniques.

The monitoring of glucose, lactate, urea and oth-
ers is of special medical interest as a guide to the
metabolic state. In particular, glucose is a substance
of high metabolic importance, since it can be consid-
ered as the main energy carrier for our organism. An
endocrine regulation for this compound exists,
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maintaining the normal fasting level of glucose in
peripheral venous blood of 70–110 mg dL–1

(3.9–6.1 mmol L–1). The level in arterial blood is
usually slightly raised compared to the venous level
which depends on nutritional and metabolic condi-
tions (between 15 and 30 mg dL–1 higher).

A glucose sensing device is an important applica-
tion for patients with disorders in their carbohydrate
metabolism, predominantly due to diabetes
mellitus. About 4% of the population in developed
countries are affected by this metabolic disease. In
type I diabetes, a severe insulin deficiency exists due
to the destruction of the beta cells producing this
hormone. In type II diabetes, enough insulin may be
available, but due to an insulin resistance in the tar-
get organs, glucose utilisation is perturbed. Therapy
aims at regulating glucose levels comparable with
metabolically healthy individuals, so that several
daily determinations of blood glucose are essential
for patients without adequate glycaemic control.
Critical care also calls for frequent measurements,
when bedside monitoring of severely ill patients is
needed.

Due to its metabolic importance, determinations
of glucose are the most frequently performed in the
clinical laboratory. Its concentration is usually de-
termined for either whole blood or derived fluids.
Blood sampling can be done by vascular puncture
using syringes; however, capillary blood is more
easily obtained by lancing finger tips or other appro-
priate body parts. For routine analysis, the estab-
lished methodology uses different enzymatic assays
in combination with photometric or electrochemical
detection, but new trends strive for reagentless as-
says using biosensor technology.9

Research activities are concentrated on the devel-
opment of continuous methodology, either
invasively by subcutaneously implanted devices (for
reviews covering this field, see References 10 and
11) or non-invasively by spectroscopy. With current
technology only inadequate glycemic control can be
achieved, even for diabetic patients undergoing in-
tensive insulin therapy. With the possibility of fre-
quent measurements, such patients would gain
advantages from a non-invasive glucose sensor. As a
further development, a continuous readout of glu-
cose levels could be used for a feedback-controlled
insulin delivery system (artificial pancreas).

Non-invasive instrumentation for patient self-
monitoring can be based on NIR spectroscopy. This
has been recognised through manyin vitro studies,
e.g. see References 12 and 13 and the literature cited
there. The main research emphasis is on the develop-
ment of reliable glucose assays, for which the selec-
tivity can only be achieved using multivariate
calibration, i.e. taking into account the NIR finger-
print spectrum of a compound. This conclusion can
also be drawn from recent Monte Carlo simulations
when studying the optical effects from glucose and
other physiological factors or analytes forin vivo
measurements.14This latter study was devoted to the
short-wave NIR range, but is equally applicable to
longer wavelengths. In a different approach, the
main emphasis was on the scattering coefficient in-
fluenced by a varying glucose concentration.15–17

Photoacoustic NIR techniques, less affected by tis-
sue scattering as experienced for diffuse reflectance,
have also been proposed.18,19 Further contributions
were presented by Danzeret al. for improving non-
invasive glucose assays using NIR spectrometry by
means of significant outlier removal.20,21 Our ap-
proach here is based on a spectral variable selection
to achieve a better prediction performance of statis-
tical calibration models than usually obtained with
full spectrum evaluation.22 This strategy uses the ex-
treme values in the optimum PLS regression vector
which is different from a method employed recently
by McShaneet al.23 for a simple analytical task us-
ing information from spectral regions with largest
spectral variance. Another strategy was followed us-
ing a genetic algorithm-based method for wave-
length selection.24 For both in vitro applications
spectral data from the transparency window between
4700 and 4200 cm–1, as experienced for transmis-
sion measurements of aqueous solutions, were used
which exclude, however, non-invasive glucose mon-
itoring due to the limited penetration depth of NIR
radiation of such wavelengths into skin tissue.

The quality of the statistical calibration models
based on oral glucose tolerance testing has been
questioned recently.4,25 It is well known that pickup
of spurious drift effects can significantly influence
the results from multivariate statistical calibrations,
especially with regard to continuous monitoring. An
appropriate experimental design with randomised
sampling is necessary for such critical applications
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when the analytical signals are comparable to the
prevailing noise level or signal drifting.26 Our strat-
egy in the past has been to employ complex experi-
ments avoiding temporal chance correlations. We
present additional data providing evidence for the
physical effects (i.e. glucose absorptivity) underly-
ing the non-invasive assay using the diffuse
reflectance technique, which is applied to the mea-
surement of skin tissue. Further development of
non-invasive technology for glucose determination
is presented, which is based on time-resolved NIR
spectroscopy allowing the probing of the
intravascular fluid space modulated by the heart
beat.

Experimental
Experiments were aimed at single person moni-

toring using the diffuse reflectance NIR spectra of
the lower inner lip. The spectral measurements were
carried out using a Fourier transform IR spectro-
meter model IFS-66 from Bruker equipped with
tungsten lamp, CaF2 beamsplitter and a liquid nitro-
gen cooled InSb detector from Infrared Associates
(Suffolk, UK). A total of 1200 interferograms pro-
viding a spectral resolution of 32 cm–1 were aver-
aged, and the resulting measurement time was about
1 minute. More details about the specially optimised
diffuse reflectance accessory have been published
elsewhere.27

Capillary blood samples for the glucose determi-
nation in the laboratory were taken by puncture of
the fingertip using capillary pipettes. The blood glu-
cose concentration was determined by the enzymatic
hexokinase/G6P-DH method. Details of the calibra-
tion design have been presented earlier.28,29One ex-
periment was performed with extensive, non-
standardised oral glucose tolerance testing (OGTT)
during a two-day campaign. To support the results
from this calibration experiment, a second test was
performed with the same diabetic patient who ac-
tively followed computer-generated random glucose
time profiles over two weeks.

For the time-resolved measurements the spec-
trometer software for gas chromatography/FT-IR
coupling was employed. A total of nine
interferograms with the same resolution as given

above were averaged within 0.5 s. The diffuse
reflectance lip spectra were recorded for a measure-
ment time of at least two minutes. Subsequent back-
ground spectra could be recorded using Spectralon
reflectance standard material from Labsphere
(North Sutton, NH, USA). The spectra were trans-
ferred to a personal computer for further processing
using MATLAB (The Mathworks, South Natick,
MA, USA).

Multivariate calibration using partial least-
squares (PLS) has been very successful for the quan-
titative analysis of several parameters in many clini-
cal blood assays. The PLS algorithm was applied for
a linear regression of the spectral data between 9000
and 5500 cm–1 (8 = 1.1–1.8 µm) against the
probands’ blood glucose concentration values. Root
mean squared errors of prediction (RMSEP=
(Σ (cref,I – cpred,i)2/M)1/2 with M samples) were esti-
mated by cross-validation using the “leave one out”
strategy, but also packages of five standards were
omitted to test the robustness of the calibration mod-
els. Programs for the input of spectral data, PLS cali-
bration and cross-validation were written in
MATLAB. Use was also made of the signal process-
ing toolbox. Further details of the calibration strat-
egy including detection of outliers are described in
References 30 and 31.

A novel strategy for spectral variable selection
based on PLS regression vector choices has recently
been described by us which has been very successful
for our clinical applications.22 It is based on the
pairwise selection of extrema of the optimum PLS
regression vector calculated for pre-selected spec-
tral intervals. These were chosen by spectrala priori
information for the component to be studied.

Multivariate calibration based on

spectral variable selection
An overview of the spectral data obtained during

the single person calibration experiments is pro-
vided by Figure 1. The primary information are the
single beam inner lip spectra which were calculated
from the apodised interferograms including phase
correction, see Figure 1(c). Usually, absorbance
spectra as shown in Figure 1(b) are considered as in-
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put data for quantitative assays. However, as we
could show for statistical calibrations,12,32

logarithmised single beam spectra of human plasma
samples can also be considered for calibration mod-
elling. These have the advantage that the prediction
performance is better due to a reduced noise level
compared to calibration models based on
absorbance data, because for the latter a noise-
containing background spectrum is required. The
background in the NIR domain is usually without
significant spectral features, as opposed to the mid-
infrared spectral range, so modelling of the back-
ground can be achieved with only a few additional
factors compared to the optimum calibration model
obtained with absorbance spectra.

The blood glucose profiles resulting from the in-
take of several glucose potions and the administra-
tion of insulin are well described in previous
publications.2,29 Sampling was done during a time
period of about 15 hours and different up-and-down
features in the temporal glucose concentration pro-
files were chosen to reduce the potential pickup of
chance correlations. The glucose values at the time
of spectrum recording were obtained by spline ap-
proximation using data with concentrations ob-
tained by capillary blood testing. Furthermore, an
impulse invariant designed Butterworth filter of first
order with a time constants of 10 min was applied to
the time dependent blood glucose profiles to esti-
mate the average lip tissue glucose concentrations at
the time when the spectra were taken. For support of
the results obtained by using oral glucose tolerance
tests, a randomised one-person experiment was per-
formed over the duration of two weeks. Different
daily glucose levels were approached with the se-
quence selected at random by the computer. The op-
timum PLS calibration models with full spectrum
evaluation between 9000 and 5475 cm–1 have been
previously discussed in detail.28,29

The improvements we achieved with this data us-
ing the novel strategy with spectral variable selec-
tion22 are significant, because we find reduced
standard errors of prediction of about 15% relative to
theRMSEPfrom the full spectrum PLS models. The
computational workload is small compared to a
model selection considered recently and based on
genetic algorithms.24,33 Interestingly, it could be
demonstrated in a recent publication34 that, with a
suitable variable selection, multiple linear regres-
sion models can be more efficient than PLS or PCR
calibration models. The results of our non-invasive
glucose assays are summarised in Table 1.

An example of the improved calibrations, based
on the data set with time delayed concentration data,
is given in Figure 2. Part (a) shows the root mean
squared error of prediction (RMSEP) dependent on
the number of orthogonal PLS factors which is
equivalent to the rank of the PLS calibration matrix
to be inverted for solving the linear equation system.
Besides the results from the leave-one-out strategy,
also those from leave-five-out cross-validation is
provided for testing calibration robustness. The re-
gression vector calculated from the optimum PLS
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Figure 1. Near infrared diffuse reflectance spectra of oral
mucosa: (a) mean reflectance spectrum as measured from
136 single person lip spectra, (b) spectrum transformed
into absorbance analogue units, (c) logarithmised mean
single beam spectrum (the latter two spectra are with pop-
ulation standard deviation).



calibration model is the basis for the spectral vari-
able selection. TheRMSEPvalues dependent on the
number of spectral data points is shown in the sub-
plot. A minimum is found for 26 variables (the opti-
mum PLS model using these variables can be
calculated from 16 PLS factors). It is interesting to
see that the least-squares solution with full rank in-
version provides nearly the same prediction errors,
and the difference in the prediction errors obtained
from cross-validation with one or five standards left
out is only 1.8 mg dL–1 for the optimum PLS mod-
els.

The number of PLS factors necessary for calibra-
tion with full spectrum employment has been ques-
tioned recently by Arnold.4 However, the results
shown here give clear evidence about the optical ef-
fects upon which our calibrations are based on. This
is well supported by a comparison of the glucose re-
gression vector sections obtained for the human
plasma population12 with that evolved for the single
person OGTT-experiment covering the same inter-
val, see Figure 3. The inversion of minima and max-
ima, as obvious for the spectral variables around
5500 cm–1, has also been observed in other cases
(see Reference 22 with respect to a total protein cali-
bration). The regression vectors for the other experi-
ments show impressively similar structures. In the
past, the structure of the full-spectrum PLS regres-
sion vectors, including studies into how they evolve
during the process of optimisation, was investigated

by us;35 these show significant similarity for both
experiments, either with OGTT or random sam-
pling. Such data must be seen in connection with the
aqueous glucose absorptivity data which is dis-
played in Figure 4. In addition to the difference spec-
tra calculated from absorbance data of the glucose
solutions (with slight compensation of water
absorbance), the spectrum of glass-like glucose is
also presented for comparison which is very similar
to the spectral features obtained from aqueous solu-
tions.36

NIR pulse spectrometry
Integral tissue probing suffers many limitations

as described in detail.1 As most clinical parameters
are obtained by the analysis of blood, it is highly de-
sirable to have access to similar information by non-
invasive spectrometric means. However, since the
blood volume represents only a small fraction of the
total skin tissue probed, the signal changes due to the
pulsatile blood flow are minimal when compared to
the total tissue water. Such a measurement principle
has been applied in pulse oximetry for many years
and has recently been reviewed.37 However, this
technique has not yet been applied for metabolite
measurements due to limitations in spectral signal-
to-noise ratio, so far observed forin vivo NIR mea-
surements.

H.M. Heiseet al., J. Near Infrared Spectrosc.6, 349–359 (1998) 353

(A) calibration data

Root mean squared prediction errors
132 spectra with OGTT

full spectrum evaluation variable selection

–log Slip, interpolated conc. 45.6 mg dL–1 38.9 mg dL–1 (30 variables)

delayed glucose profile 43.0 mg dL–1 36.4 mg dL–1 (26 variables)

(B) calibration data
216 spectra with random tests

full spectrum evaluation variable selection

–log Slip, interpolated conc. 51.9 mg dL–1 46.8 mg dL–1 (32 variables)

Table 1. Root mean squared glucose prediction errors (RMSEP) obtained for various single person calibration experiments
with diffuse reflectance lip spectra (full spectrum evaluation was done with 115 spectral variables within the interval
9000–5475 cm–1, wavenumber spacing 30.8 cm–1, see also text).



Results of time-resolved measurements on hu-
man oral mucosa are reported using diffuse
reflectance spectroscopy, which is based on the
same accessory as mentioned above for time inte-
grating inner lip measurements. The first individual
lip spectra obtained for an exemplary experiment
with fast measurements are shown in Figure 5(a).
The logarithmised single beam lip spectra were pre-

processed by a Savitzky–Golay smoothing with a
quadratic polynomial of 25 data points and calcu-
lated as differences against the first measured spec-
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Figure 2. Calibration results for blood glucose using 132
diffuse reflectance lip spectra obtained from a single-
person experiment with non-standard oral glucose toler-
ance testing and delayed glucose concentration profiles
(see text): (a) root mean squared error of prediction
(RMSEP) with full spectrum evaluation versus PLS model
rank (for the spectral interval see Table 1; the leave-one-
out cross-validation results are given by squares, results
from leave-five-out are illustrated by open circles); the
subplot provides the results from optimum PLS models as
calculated with an increasing number of especially se-
lected spectral variables. (b) predicted concentrations ver-
sus reference values (least-squares fit:
cpred = 11.5 + 0.962cref; R2 = 0.952; calibration model
based on 26 variables with an optimum PLS-rank of 18).

Figure 3. PLS regression vector sections for glucose con-
centration prediction with common spectral variables: (a)
weights obtained for calibration with random human
plasma samples from 124 different patients;12 (b) weights
obtained for calibration using a single-person experiment
with 132 lip spectra recorded during non-standard oral
glucose tolerance testing (offset and scaled; for calibra-
tion results see also Figure 2).

Figure 4. Glucose absorbance spectra within the spectral
range considered for a non-invasive spectrometric assay:
(a) spectrum from a glass-like glucose sample prepared
from syrup (arbitrarily scaled); (b) difference spectrum of
a 5.0% glucose solution as measured in a 0.5 mm cell, and
(c) difference spectrum of a 2.5% glucose solution as mea-
sured in a 10 mm cell, both at a temperature of 30EC and
with water absorbance compensation (offset for clarity).



trum of the data set. The difference spectra, after
application of a polynomial baseline fitted to four
predefined spectral intervals which are located in
the spectrum minima, are presented in Figure 5(b)
displaying also a broader spectral range. In addition,
it illustrates the intensity changes caused by changes
in the arterial blood compartment associated with
the cardiac cycle. Furthermore, a significant shifting
of the absorption band maximum around 7000 cm–1

is obvious, which suggests a change in the water
bonding structure. The reason for this could be dy-
namic effects arising from the blood pulsation, i.e.
different shearing forces due to changing blood ve-
locity. However, this must be investigated within fu-
ture experiments.

The analytical form of the spectral pulsatile sig-
nal, as known from pulse-oximetry, varies a bit, but
is mainly of sinusoidal shape modified by higher

harmonics.38 The Fourier analysis of the time de-
pendent, discretely sampled logarithmised single
beam intensities assigned to the individual spectral
variables provides us with the spectral Fourier am-
plitudes at different frequencies which is shown in
Figure 6(a). Prominent features show up around a
frequency component of 0.6 Hz, which reflects a
pulse rate of 84 heart beats per minute. This arises
from the fact that an inappropriate sampling of two
spectra per second was chosen leading to folding at
the Nyquist frequency limit which is known as
aliasing. Also higher harmonics of the pulsatile sig-
nals are folded into the frequency band resulting
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Figure 5. Some time-resolved inner lip spectra of a single
person shown as differences versus the first measured sin-
gle beam lip spectrum after Savitzky–Golay smoothing
(see text) (a) and absorbance differences after application
of a baseline correction using a quadratic polynomial and
four base points, respectively (b).

Figure 6. Three-dimensional plot of spectral Fourier am-
plitudes illustrating the pulsatile spectral components in
the NIR diffuse reflectance spectra of human oral mucosa
due to blood volume variations caused by the cardiac cycle
(a); averaged spectral Fourier amplitude coefficients from
frequency interval between 0.59 and 0.65 Hz (trace 1) and
absorbance spectrum for water as measured in a 0.5 mm
cell (trace 2, right ordinate scale) (b).



from our chosen spectral sampling. Nevertheless, a
unique and corrected assignment is still possible
with thea priori information about the heart beat fre-
quency. Investigations were carried out to determine
to what extent the frequency folding effects the Fou-
rier coefficients of the fundamental frequency of the
time-dependent signal induced by the beating heart.
No interference was observed for the fundamental
and the second intense overtone Fourier coefficients
which appear at a frequency window around 0.8 Hz
for the situation studied. Further simulations with
signals from pulse oximetry also showed that the
fundamental component can be resolved from
higher harmonics.13

In Figure 6(b) the pulsatile spectrum as obtained
from the Fourier transformation of the time-resolved
diffuse reflectance lip spectra is compared with the
water absorbance spectrum as recorded with a trans-
mission cell of 0.5 mm pathlength. The water

absorbance alterations due to the cardiac blood pres-
sure changes are about 20 mAU for the water band at
6900 cm–1. This is equivalent to a water layer of
15 µm thickness, which is about a factor of 50
smaller than obtained for the integrative measure-
ments discussed above. In comparison to the human
plasma study12 for which a cell of 1 mm pathlength
was applied, there is even a factor of 70 between the
corresponding water absorbance values. It is note-
worthy, that the ratio of the maximum amplitudes of
the water combination band at 5200 cm–1 and of the
overtone band at 6900 cm–1 is much smaller for the
pulsatile spectrum than for the water absorbance
spectrum recorded in transmission. This can be ex-
plained by the significantly different penetration
depths for the NIR radiation realised for those wave-
lengths. There are effects on the spectral water band
shape depending on the cardiac phase which has
been illustrated in Figure 5(b), with the result that
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Figure 7. Factor spectra from a principle component analysis of the logarithmised inner lip spectra of a single person re-
corded during the calibration experiment with non-standard oral glucose tolerance testing (solid lines) and of the
logarithmised inner lip spectra from a different person obtained during about one minute (sampling frequency: two spectra
recorded per second; dashed lines): (a) provides the minimum-maximum normalised loading spectra of the first five prin-
cipal components, and (b) gives additional five factor spectra related to further decreasing singular values of the original
calibration spectra matrix.



some water band broadening will be noticed for the
pulsatile spectrum.

The different complexity of the spectral data ob-
tained during the OGTT-experiment with the dia-
betic patient, compared with the spectral set
recorded during time-resolved measurements, can
be shown by a principal component analysis of both
sets of spectral data. The first 10 factor spectra, nor-
malised to the same min–max distance of their vec-
tor components, are presented in Figure 7. As the
first five vectors show great similarity due to the
dominating variance contributions from tissue wa-
ter, the other factor spectra from the integrative inner
lip measurements possibly demonstrate that differ-
ent sampling tissue sites increase the complexity of
the data. As a consequence, calibration modelling
with a greater number of factors is required for effi-
cient glucose assays than would be necessary using
pulse spectrometry.

In Figure 8 the values from the singular value de-
composition of the original logarithmised spectrum
matrices are plotted in a logarithmic scale versus the
number of the corresponding principle components,
and one notices the steepest decline for the first nine
singular values for both data sets. The slope be-

comes smaller for the next nine singular values for
the time-resolved spectra, whereas about 20 princi-
pal components are needed to change the slope again
in the plot of the singular values calculated for the
time integrated inner lip spectra. The residual com-
ponents can be related to random noise. This illus-
trates the different complexity of the spectral data
compared here.

Conclusions
The performance of non-invasive blood glucose

assays using diffuse reflectance lip spectra is still
not acceptable for the normal and hypoglycaemic
concentration ranges, even with PLS calibrations
based on spectral variable selection. Significant im-
provements could, however, be achieved compared
to previous results based on full spectrum evaluation
of pre-selected intervals. In addition, evidence is
provided for the physical effect, i.e. radiation ab-
sorption by glucose, underlying the individual cali-
bration models.

NIR pulse spectrometry of skin tissue using dif-
fuse reflectance measurements is a very promising
technique. However, further investigations have to
be carried out into which improvements can be
gained from dedicated signal processing. Finally,
pulsatile spectra of adequate signal-to-noise ratio
have to be evaluated for calibrations for metabolites
and other blood substrates. Improved time resolu-
tion measurements can better isolate the fundamen-
tal cardiac pulse frequencies or lock-in techniques
might be applied for direct difference spectrum gen-
eration of the pulsatile blood component spectrum.
Since such a technique allows the probing of a part of
the vascular fluid, the perturbations from the tissue
can be excluded, so that non-invasive blood analysis
will be more reliable. In particular, this is important
because most medical diagnostic expert systems are
based on parameter data determined from blood
samples.
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