

Low Harmonic Distortion, 24-Channel SPST High-Voltage Analog Switch

Features

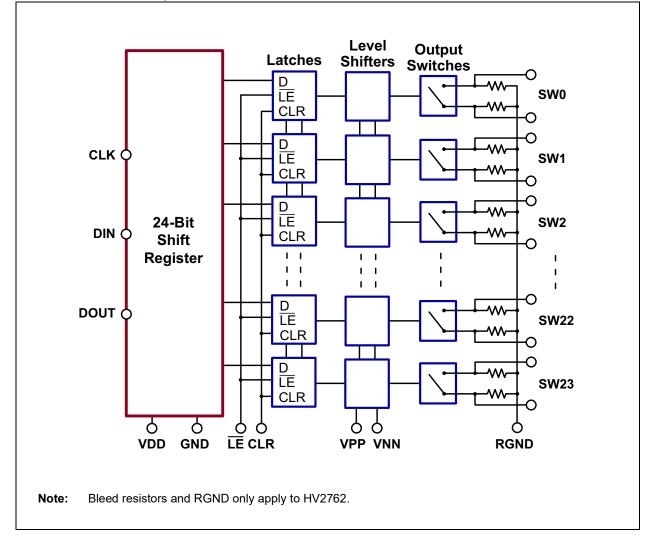
- 24-Channel of High-Voltage Analog Switch
- 3.3V or 5.0V CMOS Input Logic Level
- 24-Channel SPST Configuration
- 20 MHz Data Shift Clock Frequency
- HVCMOS Technology for High Performance
- Very Low Quiescent Power Dissipation (~10 μA)
- · Low Parasitic Capacitance
- DC to 50 MHz Analog Signal Frequency
- · -60 dB Typical OFF-Isolation at 5.0 MHz
- CMOS Logic Circuitry for Low Power
- Excellent Noise Immunity
- · Cascadable Serial Data Register with Latches
- Flexible Operating Supply Voltages
- Integrated Bleed Resistors on Outputs (HV2762 Only)

Applications

- Medical Ultrasound Imaging
- Piezoelectric Transducer Drivers
- Inkjet Printer Heads
- Optical MEMS Modules

General Description

HV2662/HV2762 are low-charge injection, low harmonic distortion, 24-channel, high-voltage analog switch integrated circuits (ICs). These ICs excel in applications requiring high-voltage switching controlled by low-voltage control signals, such as medical ultrasound imaging, piezoelectric transducer driver, and printers. HV2762 provides integrated bleed resistors that eliminate voltage build-up on capacitive loads such as piezoelectric transducers. HV2662 does not have integrated bleed resistors.


HV2662/HV2762 shift input data into a 24-bit shift register that can then be retained in a 24-bit latch. To reduce any possible clock feed through noise, the latch-enable bar should be left high until all bits are clocked in during the rising edge of the clock. Using High-Voltage CMOS technology, these ICs combine high-voltage, bilateral DMOS switches and low-power CMOS logic to provide efficient control of high voltage analog signals.

The device is suitable for various combinations of high voltage supplies, e.g., V_{PP}/V_{NN} : +40V/-160V, +100V/-100V, and +160V/-40V.

	1	2	3	4	5	6	7	8	9	10
А	\bigcirc									
В	()	\bigcirc								
С	\bigcirc	\bigcirc							\bigcirc	\bigcirc
D	\bigcirc	()		T	'ao	Viev	N		\bigcirc	\bigcirc
E	\bigcirc	\bigcirc		-	- 1-				\bigcirc	\bigcirc
F	\bigcirc	\bigcirc							\bigcirc	\bigcirc
G	\bigcirc	\bigcirc							\bigcirc	\bigcirc
н	\bigcirc	\bigcirc							\bigcirc	\bigcirc
J	\bigcirc									
К	\bigcirc									
				64-k	ball	VFE	GA			
See Table 2-1 for pin information.										

Package Types

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings[†]

V _{PP} - V _{NN} Differential Supply 220V V _{PP} Positive Supply -0.5 to V _{NN} + 200V V _{NN} Negative Supply +0.5 to -200V
V _{NN} Negative Supply+0.5 to -200V
Logic Input Voltage0.5V to V _{DD} +0.3V
Analog Signal Range $V_{\sf NN}$ to $V_{\sf PP}$
Peak Analog Signal Current/Channel
Storage Temperature65°C to +150°C
Power Dissipation

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (1,2,3)

Symbol	Parameter	Value
V _{DD}	Logic Power Supply Voltage	3.0V to 5.5V ⁽²⁾
V _{PP}	Positive High-Voltage Supply	+40V to V _{NN} +200V ⁽²⁾
V _{NN}	Negative High-Voltage Supply	-40V to -160V ⁽²⁾
V _{IH}	High-Level Input Voltage	0.9V _{DD} to V _{DD}
V _{IL}	Low-Level Input Voltage	0V to 0.1 V _{DD}
V _{SIG}	Analog Signal Voltage Peak-to-Peak	V _{NN} +10V to V _{PP} -10V ⁽³⁾
T _A	Operating Free Air Temperature	0°C to +70°C

Note 1: Power-up/down sequence is arbitrary except GND must be powered-up first and powered-down last.

- 2: Rise and fall times of power supplies V_{DD}, V_{PP}, and V_{NN} should not be less than 1.0 msec.
- **3:** V_{SIG} must be $V_{NN} \le V_{SIG} \le V_{PP}$ or floating during power-up/down transition.

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over recommended operating conditions unless otherwise specified. See test circuits in Figure 3-2.

See lest dicuits in Figure 3-2.											
Parameter	Symbol	0°C		+25°C			+70°C		Units	Conditions	
Falameter	Symbol	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units	Conditions	
				—	26	—	—	—		I _{SIG} = 5.0 mA V _{PP} = +40V,	
				_	22	_	_	_		I _{SIG =} 200 mA V _{NN} = -160V	
Small Signal Switch ON-Resistance	R _{ONS}			_	22		_	_	Ω	$I_{SIG} = 5.0 \text{ mA}$ V _{PP} = +100V,	
				—	18		—	—	52	I _{SIG} = 200 mA V _{NN} = -100V	
				_	20	_	_	_		$I_{SIG} = 5.0 \text{ mA}$ $V_{PP} = +160 \text{V},$	
				_	16		_	_		I _{SIG} = 200 mA V _{NN} = -40V	
Small Signal Switch ON-Resistance Matching	ΔR_{ONS}	—	20	—	5.0	20		20	%	I _{SIG} = 5.0 mA, V _{PP} = +100V, V _{NN} = -100V	
Large Signal Switch ON-Resistance	R _{ONL}	_	_		30	_	_	—	Ω	V _{SIG} = V _{PP} -10V, I _{SIG} = 1A (Note 1)	

Note 1: Specification is obtained by characterization and is not 100% tested.

2: Design guidance only.

^{© 2016-2020} Microchip Technology Inc.

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Over recommended operating conditions unless otherwise specified. See test circuits in Figure 3-2.

See test circuits in Figure 3-2.												
Deversator	Cumela e l	0	°C		+25°C		+7	0°C	Units	Conditions		
Parameter	Symbol	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units	Conditions		
Output-Switch Shunt Resistance (HV2762 Only)	R _{INT}	_		20	35	50	_		ΚΩ	Output Switch to R _{GND} , I _{RINT} = 0.5 mA		
Switch OFF-Leakage per Switch	I _{SOL}	—	5.0	—	1.0	10	—	15	μA	V _{SIG} = V _{PP} -10V, V _{NN} +10V		
DC Offset Switch OFF	V _{OS}	_	300	—	100	300		300	mV	No load for HV2762.		
DC Offset Switch ON			500	_	100	500	—	500		R_{LOAD} = 100 K Ω for HV2662		
Quiescent V _{PP} Supply Current	I _{PPQ}	_		_	10	50			μA	All switches OFF		
Quiescent V _{NN} Supply Current	I _{NNQ}	_		_	-10	-50	_		μΑ			
Quiescent V _{PP} Supply Current	I _{PPQ}	_		_	10	50			μA	All switches ON,		
Quiescent V _{NN} Supply Current	I _{NNQ}	_		_	-10	-50			μΑ	$I_{SW} = 5.0 \text{ mA}$		
Switch Output Peak Current	I _{SW}	_		_	2.0	1.3	_		А	V _{SIG} duty cycle < 0.1% (Note 1)		
Output Switching Frequency	f _{SW}	—		_	_	50	_		kHz	Duty cycle = 50% (Note 1)		
			4.0	_		4.5		5.0		V _{PP} = +40V, All output V _{NN} = -160V switches are		
Average VPP Supply Current	I _{PP}	—	4.0	—	—	4.5	—	5.0	mA	V_{PP} = +100V, V_{NN} = -100V and OFF at		
			4.0	_		4.5		5.0		$\frac{V_{PP}}{V_{PP}} = +160V,$ $V_{NN} = -40V$ 50 kHz with no load.		
		_	4.0	—	_	4.5	_	5.0		V_{PP} = +40V, All output V_{NN} = -160V switches are		
Average V _{NN} Supply Current	I _{NN}	—	4.0	—	—	4.5		5.0	mA	V _{PP} = +100V, V _{NN} = -100V and OFF at		
		—	4.0	—	_	4.5		5.0		$\frac{V_{PP}}{V_{PP}} = +160V,$ $V_{NN} = -40V$ 50 kHz with no load.		
Average V _{DD} Supply Current	I _{DD}	_	8.0	_	_	8.0	_	8.0	mA	f _{CLK} = 5.0 MHz, V _{DD} = 5.0V		
Quiescent V _{DD} Supply Current	I _{DDQ}	_	10	_	—	10	_	10	μA	All logic inputs are static		
Data Out Source Current	I _{SOR}	0.45	_	0.45	0.70	—	0.40		mA	$V_{OUT} = V_{DD} - 0.7V$		
Data Out Sink Current	I _{SINK}	0.45	-	0.45	0.70	—	0.40		mA	$V_{OUT} = 0.7V$		
Logic Input Capacitance	C _{IN}		10		_	10	_	10	pF	(Note 2)		

Note 1: Specification is obtained by characterization and is not 100% tested.

2: Design guidance only.

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over recommended operating conditions unless otherwise specified. See test circuits in Figure 3-2.

See test circuits in F	See test circuits in Figure 3-2.										
Parameter	Symbol	0	°C		25°C		70	°C	Units	Conditions	
Parameter	Symbol	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units	Conditions	
Setup Time Before LE Rises	t _{SD}	25	_	25	_	_	25	_	ns	(Note 1)	
Time Width of \overline{LE}	t	56	—	56	—	—	56	—	ns	V _{DD} = 3.0V (Note 1)	
	t _{WLE}	12	—	12	—	—	12	—	113	V _{DD} = 5.0V (Note 1)	
Clock Delay Time to	tao	9.0	40	9.0	—	40	9.0	40	ns	V _{DD} = 3.0V (Note 1)	
Data Out	t _{DO}	8.0	30	8.0	—	30	8.0	30	113	V _{DD} = 5.0V (Note 1)	
Time Width of CLR	t _{WCLR}	55	_	55	_	—	55	—	ns	(Note 1)	
Setup Time Data to	t _{SU}	21	—	21	—	—	21	—	ns	V _{DD} = 3.0V (Note 1)	
Clock	•50	7.0	_	7.0	—	—	7.0	—	110	V _{DD} = 5.0V (Note 1)	
Hold Time Data	t _H	5.0	—	5.0	—	—	5.0	—	ns	V _{DD} = 3.0V (Note 1)	
from Clock	Ч	5.0	—	5.0	—	—	5.0	—	110	V _{DD} = 5.0V (Note 1)	
Clock Frequency	f _{CLK}	_	8	—	_	8	—	8	MHz	V _{DD} = 3.0V	
	'CLK	—	20	—	—	20	—	20	101112	V _{DD} = 5.0V (Note 1)	
Clock Rise and Fall Times	t _R , t _F	—	50	_	_	50	_	50	ns	(Note 1)	
Turn ON Time	t _{ON}	_	5.0	—	—	5.0	—	5.0		V _{SIG} = V _{PP} -10V,	
Turn OFF Time	t _{OFF}	_	5.0	—	—	5.0	—	5.0	μs	R _{LOAD} = 10 kΩ	
			20	_	_	20	_	20		V _{PP} = +40V, V _{NN} = -160V (Note 1)	
Maximum V _{SIG} Slew Rate	dv/dt	—	20	—	—	20	-	20	V/ns	V _{PP} = +100V, V _{NN} = -100V (Note 1)	
			20	—	—	20	—	20		V _{PP} = +160V, V _{NN} = -40V (Note 1)	
	K	-30	_	-30	-33	_	-30	_		f = 5.0 MHz, 1.0 KΩ//15 pF load (Note 1)	
OFF Isolation	К _О	-58	_	-58	-60	_	-58	_	dB	f = 5.0 MHz, 50Ω load (Note 1)	
Switch Crosstalk	K _{CR}	-60	_	-60	-70	_	-60	—	dB	f = 5.0 MHz, 50Ω load (Note 1)	
Output Switch Isolation Diode Current	I _{ID}	_	300	_	_	300	_	300	mA	300 ns pulse width, 2.0% duty cycle (Note 1)	
OFF Capacitance SW to GND	C _{SG(OFF)}	_	14	_	9.0	14	_	14	pF	V _{SIG} = 0V, f = 1.0 MHz	
ON Capacitance SW to GND	C _{SG(ON)}	_	17	_	12	17	_	17		(Note 1)	
	+V _{SPK}	_	—	—	—	150	—	—		V _{PP} = +40V, V _{NN} = -160V	
	-V _{SPK}	_	—	—	—	150	—	—		R _{LOAD} = 50Ω (Note 1)	
Output Voltage	+V _{SPK}			mc) /	V _{PP} = +100V, V _{NN} = -100V						
Spike (per Switch)	-V _{SPK}	_	—	—	—	150	—	—	mV	R _{LOAD} = 50Ω (Note 1)	
	+V _{SPK}	_	—	—	_	150	—	—		V _{PP} = +160V, V _{NN} = -40V	
	-V _{SPK}	_		_	_	150		—		$R_{LOAD} = 50\Omega$ (Note 1)	
Note 1. Specifier			<u> </u>	L	<u> </u>			· · · ·	I	1	

Note 1: Specification is obtained by characterization and is not 100% tested.

^{© 2016-2020} Microchip Technology Inc.

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Over recommended operating conditions unless otherwise specified.

See test circuits in Figure 3-2.											
Parameter	C. mahal	0°C		25°C			70°C		Units	Conditions	
Falameter	Symbol	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units	Conditions	
	QC	_	—	_	820	—		—	nC	V _{PP} = +40V, V _{NN} = -160V (Note 1)	
Charge Injection (per Switch)		_	_	—	600	_		—		V _{PP} = +100V, V _{NN} = -100V (Note 1)	
		_	_	_	350	_	_	—		V _{PP} = +160V, V _{NN} = -40V (Note 1)	

Note 1: Specification is obtained by characterization and is not 100% tested.

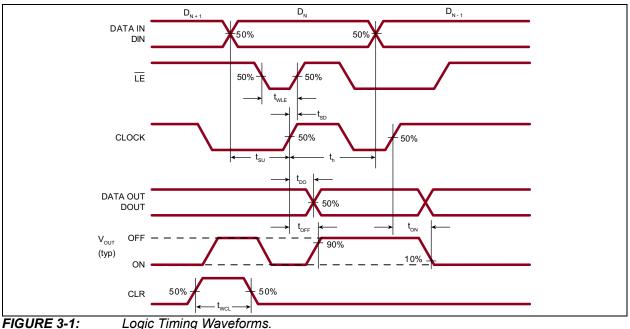
TEMPERATURE SPECIFICATIONS

Electrical Specifications: Unless otherwise specified, for all specifications $T_A = T_J = +25^{\circ}C$									
Parameter	Symbol	Min	Тур	Мах	Units	Conditions			
Temperature Ranges									
Storage Temperature	Τ _Α	-65	—	+150	°C				
Package Thermal Resistances									
Thermal Resistance, 64-Ball VFBGA	θ _{ja}		36	_	°C/W				

2.0 PIN DESCRIPTION

The locations of the balls are listed in Package Types.

Pin #	HV2662	HV2762	Description
A1	SW22B	SW22B	Analog switch 22 terminal B
A2	V _{NN}	V _{NN}	Negative supply voltage
A3	SW21B	SW21B	Analog switch 21 terminal B
A4	SW20B	SW20B	Analog switch 20 terminal B
A5	SW19B	SW19B	Analog switch 19 terminal B
A6	SW18B	SW18B	Analog switch 18 terminal B
A7	SW17B	SW17B	Analog switch 17 terminal B
A8	SW16B	SW16B	Analog switch 16 terminal B
A9	SW15B	SW15B	Analog switch 15 terminal B
A10	SW15A	SW15A	Analog switch 15 terminal A
B1	SW23B	SW23B	Analog switch 23 terminal B
B2	SW23A	SW23A	Analog switch 23 terminal A
B3	SW22A	SW22A	Analog switch 22 terminal A
B4	SW21A	SW21A	Analog switch 21 terminal A
B5	SW20A	SW20A	Analog switch 20 terminal A
B6	SW19A	SW19A	Analog switch 19 terminal A
B7	SW18A	SW18A	Analog switch 18 terminal A
B8	SW17A	SW17A	Analog switch 17 terminal A
B9	SW16A	SW16A	Analog switch 16 terminal A
B10	SW14B	SW14B	Analog switch 14 terminal B
C1	NC	NC	No connect
C2	V _{PP}	V _{PP}	Positive supply voltage
C9	SW14A	SW14A	Analog switch 14 terminal A
C10	SW13B	SW13B	Analog switch 13 terminal B
D1	CLR	CLR	Latch clear logic input
D2	NC	RGND	No connect/Ground for bleed resistor
D9	V _{NN}	V _{NN}	Negative supply voltage
D10	SW13A	SW13A	Analog switch 13 terminal A
E1	LE	LE	Latch-enable logic input, low active
E2	CLK	CLK	Clock logic input for shift register
E9	SW12B	SW12B	Analog switch 12 terminal B
E10	SW12A	SW12A	Analog switch 12 terminal A
F1	V _{DD}	V _{DD}	Logic supply voltage
F2	GND	GND	Ground
F9	SW11B	SW11B	Analog switch 11 terminal B
F10	SW11A	SW11A	Analog switch 11 terminal A
G1	D _{IN}	D _{IN}	Data-in logic input
G2	D _{OUT}	D _{OUT}	Data-out logic output
G9	SW10B	SW10B	Analog switch 10 terminal B
G10	V _{NN}	V _{NN}	Negative supply voltage
H1	NC	RGND	No connect/ Ground for bleed resistor
H2	V _{PP}	V _{PP}	Positive supply voltage


TABLE 2-1: BALL DESCRIPTION 64-BALL VFBGA

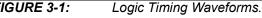
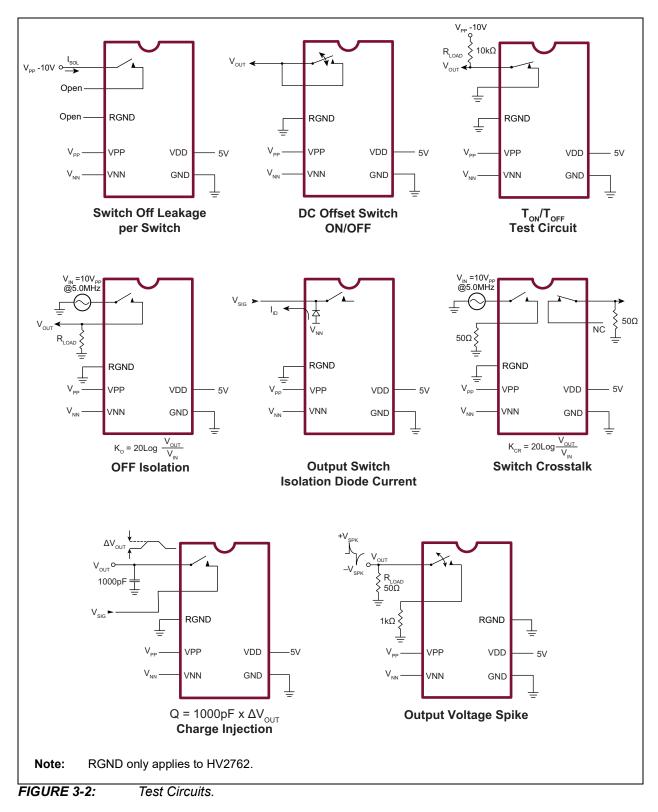

 $\ensuremath{\textcircled{}^{\odot}}$ 2016-2020 Microchip Technology Inc.

TABLE 2-1:	BALL DESCRIPTION 6	INNUED)	
Pin #	HV2662	HV2762	Description
H9	SW10A	SW10A	Analog switch 10 terminal A
H10	SW9B	SW9B	Analog switch 9 terminal B
J1	SW0A	SW0A	Analog switch 0 terminal A
J2	SW0B	SW0B	Analog switch 0 terminal B
J3	SW1B	SW1B	Analog switch 1 terminal B
J4	SW2B	SW2B	Analog switch 2 terminal B
J5	SW3B	SW3B	Analog switch 3 terminal B
J6	SW4B	SW4B	Analog switch 4 terminal B
J7	SW5B	SW5B	Analog switch 5 terminal B
J8	SW6B	SW6B	Analog switch 6 terminal B
J9	SW7B	SW7B	Analog switch 7 terminal B
J10	SW9A	SW9A	Analog switch 9 terminal A
K1	SW1A	SW1A	Analog switch 1 terminal A
K2	V _{NN}	V _{NN}	Negative supply voltage
K3	SW2A	SW2A	Analog switch 2 terminal A
K4	SW3A	SW3A	Analog switch 3 terminal A
K5	SW4A	SW4A	Analog switch 4 terminal A
K6	SW5A	SW5A	Analog switch 5 terminal A
K7	SW6A	SW6A	Analog switch 6 terminal A
K8	SW7A	SW7A	Analog switch 7 terminal A
K9	SW8A	SW8A	Analog switch 8 terminal A
K10	SW8B	SW8B	Analog switch 8 terminal B

TABLE 2-1: BALL DESCRIPTION 64-BALL VFBGA (CONTINUED)

3.0 FUNCTIONAL DESCRIPTION


TABLE 3-1: TRUTH TABLE

D0 ¹	D1		D15	D16		D23 ²	LE ³	CLR ⁴	SW0 ^{5,6}	SW1		SW15	SW16	 SW23
L	_					—	L	L	OFF					—
Н	—		_	—		—	L	L	ON	—				—
—	L		_	—		—	L	L	-	OFF				—
—	Н		_	—			L	L	_	ON		-	_	—
—	—		_	—		—	L	L	-	—				—
—	_		_	_		_	L	L	—	_		—	_	_
—	_		L	_		_	L	L	—			OFF	—	_
—	_		Н	_		_	L	L	—			ON	—	_
—	_		_	L		_	L	L	—			_	OFF	 _
—	_		_	Н		_	L	L	—			_	ON	_
—	_		_	_		_	L	L	—			_	—	_
—	—		_	_			L	L	—			—	—	_
—	—		_	_			L	L	—			—	—	_
—	_		_	_		_	L	L	—			_	—	_
—	—		_	_		L	L	L	—					OFF
—	—		_	_		Н	L	L	—					ON
Х	Х	Х	Х	Х	Х	Х	Н	L		HC	DLD PF	REVIOU	S STATE	
Х	Х	Х	Х	Х	Х	Х	Х	Н		ŀ	ALL SV	VITCHE	S OFF	

Note 1: Serial data is clocked in on the L to H transition of the CLK.


- 2: DOUT is high when data in the register 23 is high.
- 3: Shift registers clocking has no effect on the switch states if LE is high.
- 4: The CLR clear input overrides all other inputs.
- 5: The 24 switches operate independently.
- 6: All 24 switches go to a state retaining their latched condition at the rising edge of \overline{LE} . When \overline{LE} is low, the shift registers data flow through the latch.

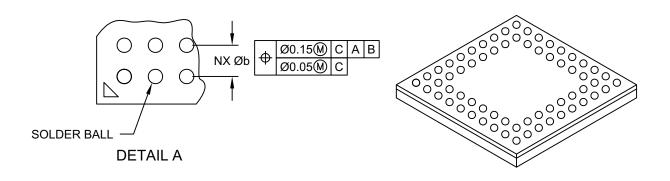
3.1 Application Information

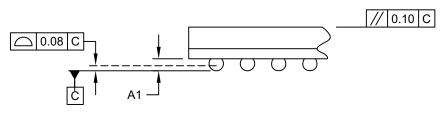
4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend	I: XXX Y YY WW NNN @3 *	Product Code or Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for product code or customer-specific information. Package may or e the corporate logo.

64-Ball Very Thin Fine Pitch Ball Grid Array (GA) - 7x7x1.0 mm Body [VFBGA] Supertex Legacy


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-370-GA Rev A Sheet 1 of 2

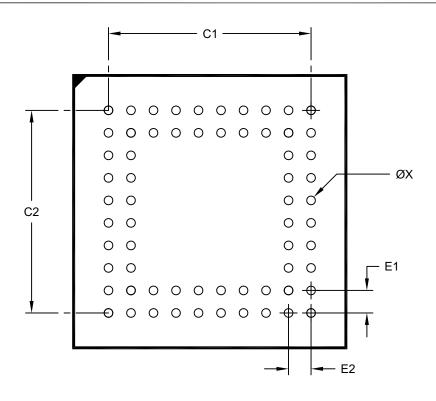
64-Ball Very Thin Fine Pitch Ball Grid Array (GA) - 7x7x1.0 mm Body [VFBGA] Supertex Legacy

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		Inits MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	64			
Pitch	е	0.65 BSC			
Overall Height	Α	-	-	1.00	
Standoff	A1	0.16	-	0.25	
Molded Cap Thickness	A3	0.45 REF			
Overall Width	E	7.00 BSC			
Overall Ball Pitch	E1	5.85 BSC			
Overall Length	D	7.00 BSC			
Overall Ball Pitch	D1	5.85 BSC			
Ball Diameter	Øb	0.25	0.30	0.35	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-370-GA Rev A Sheet 2 of 2

64-Ball Very Thin Fine Pitch Ball Grid Array (GA) - 7x7x1.0 mm Body [VFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		S
Dimensior	n Limits	MIN	NOM	MAX
Contact Pitch	E1	0.65 BSC		
Contact Pitch	E2	0.65 BSC		
Contact Pad Spacing	C1		5.85	
Contact Pad Spacing	C2		5.85	
Contact Pad Diameter (X64)	Х		0.25	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2370-GA Rev A

APPENDIX A: REVISION HISTORY

Revision A (May 2016)

- Converted Supertex Docs #'s DSFP-2662 and DSFP-HV2762 to Microchip DS20005372.
- Merged HV2662 and HV2762 into one document.
- Updated "Product Identification System". Removed parts with a package code of "LA"; Added package "GA".
- EOL of 64-Ball LFGA package (LB) per PCN JAON-20WQKC840.
- Added information for 64-Ball VFBGA (GA) throughout.
- Minor text changes throughout.

Revision B (August 2020)

- Updated Packaging Information section.
- Made minor typographical corrections.

^{© 2016-2020} Microchip Technology Inc.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<u>PART NO. XX - X - X</u>		E	Examples:			
Device	Package Environmental Media Options Type	а) HV2662GA-G:	64-ball VFBGA package, 120/Tray		
		b) HV2762GA-G:	64-ball VFBGA package, 120/Tray		
Device:	HV2662 = 24-Channel, HV Analog Switch HV2762 = 24-Channel, HV Analog Switch with Bleed Resistors					
Package:	GA = 64-ball VFBGA					
Environmental	G = Lead (Pb)-free/RoHS-compliant package					
Media Type:	(blank) = 120/Tray for GA package					

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
 committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
 feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
 other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet Iogo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2016-2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-6674-1

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

DS20005372B-page 18

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Philippines - Manila

Singapore

Tel: 886-3-577-8366 Taiwan - Kaohsiung

Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Netherlands - Drunen Tel: 31-416-690399

Italy - Milan

Italy - Padova

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

© 2016-2020 Microchip Technology Inc. 02/28/20

Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Tel: 63-2-634-9065

Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-7-213-7830

Taiwan - Taipei

Fax: 31-416-690340

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91